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Unit - II 

Linear Systems- Let us consider a system of first order differential equations of the form 

),(

),(

yxG
dt

dy

yxF
dt

dx

=

=
                                           (1) 

Where t is an independent variable.  And x & y are dependent variables. 

The system (1) is called a linear system if both F(x, y) and G(x, y) are linear in x and y. 

Also system (1) can be written as 

)()()(

)()()(

222

111

tfytbxta
dt

dy

tfytbxta
dt

dx

++=

++=
    (2) 

Where )(tai , )(tbi and )(tf i 2,1=∀i  are continuous functions on [ ]ba, . 

Homogeneous and Non-Homogeneous Linear Systems- The system (2) is called a 

homogeneous linear system, if both )(1 tf and )(2 tf are identically zero and if both )(1 tf and 

)(2 tf are not equal to zero, then the system (2) is called a non-homogeneous linear system. 

Solution- A pair of functions 
)(

)(

tyy

txx

=
=

 defined on [ ]ba, is said to be a solution of (2) if it satisfies 

(2). 

Example- 

Byx
dt

dy

Ayx
dt

dx

........2

........4

+=

−=
                                                                                                    (3) 

From A, 
dt

dx
xy −= 4 putting in B we obtain 065

2

2

=+− x
dt

dx

dt

xd
is a 2nd order differential 

equation. The auxiliary equation is 3,20652 =⇒=+− mmm so 
t

t

ex

ex
3

2

=
=

 putting tex 2= in A, we 

obtain tey 22= again putting tex 3= in A, we obtain tey 3= . Therefore the solutions of (3) are 

t

t

ey

ex
2

2

2=
=

 and 
t

t

ey

ex
3

3

=
=

                      (4) 
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Theorem-1 If 0t is any point of [ ]ba, and 0x & 0y are any two numbers, then the system (2) has a 

unique solution 
)(

)(

tyy

txx

=
=

with 
00

00

)(

)(

yty

xtx

=
=

. 

Theorem-2 If the homogeneous system 

ytbxta
dt

dy

ytbxta
dt

dx

)()(

)()(

22

11

+=

+=
                (5) 

has two solutions 
)(

)(

1

1

tyy

txx

=
=

and 
)(

)(

2

2

tyy

txx

=
=

                                                                                    (6) 

on [ ]ba, . Then 
)()(

)()(

2211

2211

tyctycy

txctxcx

+=
+=

                                                                                             (7) 

is also a solution of (5) on [ ]ba, for any two constants 1c and 2c . 

Theorem-3 If the two solutions 
)(

)(

1

1

tyy

txx

=
=

and 
)(

)(

2

2

tyy

txx

=
=

   (6) of the homogeneous system (5) 

have a wronskian )(tW that does not vanish on [ ]ba, , then 
)()(

)()(

2211

2211

tyctycy

txctxcx

+=
+=

   (7) is a general 

solution of homogeneous system (5) on [ ]ba, . 

Note- The wronskian W(t) of the solutions (4) is  

t

tt

tt

e

ee

ee
tW

5

23

23

2
)(

=

=
 

Theorem -4 The wronskian W(t) of two solutions (6) of homogeneous system (5) is either 
identically zero or nowhere zero on [ ]ba, i.e  

0)( =tW (linearly dependent) or  0)( ≠tW (linearly independent).   

The wronskian W(t) satisfies the differential equation, [ ]Wtbta
dt

dW
)()( 21 += and on integrating 

between the limits 0 to t we obtain  

∫
=

+
t

dttbta

cetW 0

21 )]()([

)( . 
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Theorem -5 If the two solutions 
)(

)(

1

1

tyy

txx

=
=

and 
)(

)(

2

2

tyy

txx

=
=

 of homogeneous system (5) are linearly 

independent on [ ]ba, and if 
)(

)(

tyy

txx

p

p

=

=
is any particular solution of non-homogeneous system (2) 

on[ ]ba, , then 
)()()(

)()()(

2211

2211

tytyctycy

txtxctxcx

p

p

++=

++=
 is a general solution of of non-homogeneous system 

(2) on [ ]ba, . 

Example- Show that 
t

t

ey

ex
4

4

=
=

 and 
t

t

ey

ex
2

2

−

−

−=
=

 are the solutions of the homogeneous system  

yx
dt

dy

yx
dt

dx

+=

+=

3

3
  and find the particular solution 

)(

)(

tyy

txx

=
=

 of the given system for which 5)0( =x and 

.1)0( =y  

Solution- Let 

yx
dt

dy

yx
dt

dx

+=

+=

3

3
                                 (1) 

First, we show that each of the pair 
t

t

ey

ex
4

4

=

=
 and 

t

t

ey

ex
2

2

−

−

−=

=
 satisfy the system (1). In order to 

determines a particular solution of (1), let us consider 
)()(

)()(

2211

2211

tyctycy

txctxcx

+=
+=

  (2) be a particular 

solution of (1), where the constants1c and 2c are to be determined. Putting the values of 
tetx 4

1 )( = , tetx 2
2 )( −= ,  tety 4

1 )( =  and tety 2
2 )( −−= in (2) and using the given conditions 

5)0( =x and 1)0( =y , we obtain 31 =c and 22 =c .  

Therefore 
tt

tt

eey

eex
24

24

23

23
−

−

−=

+=
is a particular solution. 

Example Show that 
32

23

+−=
−=
ty

tx
 is a particular solution of the non-homogeneous system  
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2523

12

−−+=

−++=

tyx
dt

dy

tyx
dt

dx

and write the general solution of this system. 

Hint-  Let 

2523

12

−−+=

−++=

tyx
dt

dy

tyx
dt

dx

                                                                                                    (1) 

 Now 
32

23

+−=
−=
ty

tx
will be a particular solution of the non-homogeneous system (1) if it satisfies 

the system (1). In order to find a general solution of system (1), we have to find a solution 

corresponding homogeneous system 

yx
dt

dy

yx
dt

dx

23

2

+=

+=
    (2) to system (1) as similar in example in 

equation (3). 

Answer- 
323

232

2
4

1

2
4

1

+−−=

−++=
−

−

tececy

tececx
tt

tt

 

Homogeneous Linear Systems with Constant Coefficients- Let us consider a homogeneous 

linear system with constant coefficients 

ybxa
dt

dy

ybxa
dt

dx

22

11

+=

+=
                      (1) 

Where 211 ,, aba and 2b are constants. Suppose 
tm

tm

Bey

Aex

=
=

                                                            (2)    

(where BA, and m are to be determined) be a solution of the system (1), then it satisfies (1) so 

tmtm

tmtm

eBbAaeBm

eBbAaeAm

)(

)(

22

11

+=

+=
  

Or  

0)(

0)(

22

11

=−+
=+−

BmbAa

BbAma
                                              (3) 
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is a system of equations of the form 0=ax  has a trivial solution 0=x , if 0== BA  so for a 
nontrivial solution 0≠x  of (3), we have 0=a i.e 

0
22

11 =
−

−
mba

bma
 , on expanding we obtain a quadratic equation in m 

0)()( 122121
2 =−++− babambam                   (4) 

gives two values of m say 1m and 2m . Now the following three cases arise  

Case-1 If 1m  and 2m are real and distinct, then corresponding to 1m , we find the values of A and 

B say 1A and 1B by equation (3), so the first nontrivial solution is 
tm

tm

eBy

eAx
1

1

1

1

=

=
  . Similarly 

corresponding to 2m , we find the another nontrivial solution 
tm

tm

eBy

eAx
2

2

2

2

=

=
 

Therefore the general solution is 
)()(

)()(
21

21

2211

2211

tmtm

tmtm

eBceBcy

eAceAcx

+=

+=
 

Example- Find the general solution of the system of equations 

yx
dy

dy

yx
dt

dx

24 −=

+=
 

Solution- Let 
yx

dy

dy

yx
dt

dx

24 −=

+=
                       (1) 

On comparing 4,1,1 211 === aba and 22 −=b , the auxiliary equation is 062 =−+ mm gives 

2,3−=m  

Where A and B satisfy 
0)2(4

0)1(

=−−+
=+−
BmA

BAm
                 (2) 

When 3−=m , then by (2) we get 4,1 −== BA and the first nontrivial solution is 
t

t

ey

ex
3

3

4 −

−

−=

=
. 
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Similarly for 2=m , then by (2) we get 1,1 == BA and the another nontrivial solution is 

t

t

ey

ex
2

2

4=

=
.   

Therefore the general solution is 
tt

tt

ececy

ececx
2

2
3

1

2
2

3
1

4 +−=

+=
−

−

 

Example- Find the general solution of the system 
yx

dy

dy

y
dt

dx

32

43

+−=

+−=
 

Answer-
  

tt

tt

ececy

ececx

21

212

+=

+=
−

−

 
Case-2 If 1m and 2m are conjugate complex numbers of the form iba ± , where a and b are real 

numbers with 0≠b , then we consider two linearly independent solutions 
tiba

tiba

eBy

eAx
)(*

1

)(*
1

+

+

=

=
  (1) and 

tiba

tiba

eBy

eAx
)(*

2

)(*
2

−

−

=

=
   , where 21

*
1 iAAA += , 21

*
1 iBBB += , 21

*
2 iAAA −= and 21

*
2 iBBB −= resp. Putting 

the values of *
1A and *

1B in (1), we have 

)sin(cos)(

)sin(cos)(

21

21

btibteiBBy

btibteiAAx
ta

ta

++=

++=
 

Or 

[ ]
[ ])cossin()sincos(

)cossin()sincos(

2121

2121

btBbtBibtBbtBey

btAbtAibtAbtAex
ta

ta

++−=

++−=
 

Equating real and imaginary parts, we obtain two linearly independent solutions say  

)sincos(

)sincos(

21

21

btBbtBey

btAbtAex
ta

ta

−=

−=
               (3)   and 

)cossin(

)cossin(

21

21

btBbtBey

btAbtAex
ta

ta

−=

−=
               (4) 

Therefore the general solution is  

[ ]
[ ])cossin()sincos(

)cossin()sincos(

212211

212211

btBbtBcbtBbtBcey

btAbtAcbtAbtAcex
ta

ta

++−=

++−=
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Example-    

yx
dt

dy

yx
dt

dx

25

24

+=

−=
 

Hint - 

yx
dt

dy

yx
dt

dx

25

24

+=

−=
                        (1) 

The auxiliary equation is 01862 =+− mm gives im 33±= , taking a nontrivial solution

)3sin3(cos)(

)3sin3(cos)(
3

21

3
21

titeiBBy

titeiAAx
t

t

++=

++=
     (2) of (1), where 211 ,, ABA and 2B are to be determined. For 

this (2) satisfies (1) and equating the coefficients of t3cos and t3sin on both sides.  

Answer- 
[ ])3cos33(sin)3sin33cos(

)3sin23cos2(

21
3

21
3

ttcttcey

tctcex
t

t

−++=

+=
 

Case -3 If mmm == 21 are equal roots then we should have only one linearly solution  

tm

tm

Bey

Aex

=

=
 and the 2nd linearly independent solution will be of the form 

tm

tm

Btey

Atex

=

=
. But actually, 

we consider the 2nd linearly independent solution  

tm

tm

etBBy

etAAx

)(

)(

21

21

+=

+=
, where 121 ,,,, BAABA and 2B are to be determined. 

Therefore the general solution is 
tmtm

tmtm

etBBcBecy

etAAcAecx

)(

)(

2121

2121

++=

++=

 

Example- Find the general solution of the system 

yx
dt

dy

yx
dt

dx

−=

−= 43
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Solution-   Let 

yx
dt

dy

yx
dt

dx

−=

−= 43
                                                                                            (1) 

The auxiliary equation is  

0122 =+− mm  

1,1=m  

Let 
t

t

Bey

Aex

=

=
                                                                                                                                    (2) 

be a solution of (1), where A and B satisfy 

02

042

=−
=−

BA

BA
  gives 1,2 == BA ,so 

t

t

ey

ex

=
= 2

                                                                                                                                                                       (3)  

be a first linearly independent solution of (1). We consider the second linearly independent 

solution of (1) of the form 
t

t

etBBy

etAAx

)(

)(

21

21

+=

+=
                                                                                  (4) 

so it satisfies (1) 

ttBABBA

ttBABAA

00)2()2(

00)42()42(

22211

21121

+=−+−−
+=−+−−

  on equating both sides we have 

042

042

21

121

=−
=−−

BA

BAA
   and 

02

02

22

211

=−
=−−

BA

BBA
                                                                                                     (5) 

On solving the equations in (5), we obtain 1&2,0,1 2211 ==== BABA  

The another linearly independent solution is  

t

t

tey

etx

=

+= )21(
 

Therefore the general solution is  
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tt

tt

tececy

etcecx

21

21 )21(2

+=

++=
 

Example- Find the general solution of the system 

yx
dt

dy

yx
dt

dx

+−=

+= 45
 

Answer- 
ttececy

etcecx
t

tt

3

)21(2

2
3

1

3
2

3
1

−=

++−=
 

Non-Linear Systems: Volterra’s Prey- Predator Equations- 

Everyone knows that there is a constant struggle for survival among different species of animals 
living in the same environment. One kind of animal survives by eating another and a second by  

For an example of this universal conflict between the predator and its prey, let us imagine an 
island inhabited by foxes and rabbits. The foxes eat rabbits and the rabbits eat clovers. Let us 
assume that there is so much clovers then the rabbits have an ample supply of food. When the 
rabbits are abundant, then the foxes flourish and their population grows. When the foxes become 
too numerous and eat too many rabbits, then they enter into a period of famine and their 
population begins to decline. As the foxes decrease, then the rabbits become relatively safe and 
their population starts to increase again. Thus we have an endless repeated cycle of the increase 
and decrease in two species of animals and the fluctuations in two species are given by the 
following figure  

 

If x  and y are the number of rabbits and foxes at any time t, then in the presence of an unlimited 

supply of clovers,  



 

 
10 

The rate of change of rabbits is 0, >= aax
dt

dx
, after some encounter between the rabbits and 

foxes the rate of change of rabbits is 0,, >−= babxyax
dt

dx
                                                       (1) 

In the absence of rabbits the foxes die and the rate of change of foxes is 0, >−= ccy
dt

dy
 and 

after some encounter of foxes with rabbits their population grows and the rate of change of foxes 
become 

0,, >+−= dcdxycy
dt

dy
                      (2) 

These two equations are called the volterra’s prey-predator equations.  

For the solution of these equations, we divide (2) by (1)  

)(

)(

byax

dxcy

dt

dx
dt

dy

−
−−=  

Or 

)(

)(

byax

dxcy

dx

dy

−
−−=                        (3) 

on separating the variables, we have  

0
)()( =−+−

y

dybya

x

dxdxc
 

0=







−+







 − ∫∫ dyb
y

a
dxd

x

c
 

On integrating, we have 

)(

logloglog
bydxac Keyxor

Kbydxyaxc
+=

++=+
                   (4) 

In order to determine K putting 0000 )(,)( ytyxtx == in (4) so 

)(
00

00 ybxdac eyxK +−=  
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Therefore the solution of volterra’s prey- predator equations is 

( ) )((
00

00 ybxdybxdacac eeyxyx ++−=  

Non-Linear Equations- Let us consider the motion of a pendulum consisting a bob of mass m 
attached to one end of a light rod of length a. If the bob is pulled to one side through an angle a

 

and then released, let q be the position of the bob after time t s.t. AQ= s, thgn by the principle of 

conservation of energy,  

Gain in kinetic energy =Loss in potential energy 

)coscos(
2

1 2 αθ aamgmv −=
 

)cos(cos
2

1 2 αθ −= gav                                                                                                                                 (1) 

Also θas = , so 
dt

d
a

dt

ds
v

θ== ,  putting in (1) 

)cos(cos
2

1
2

2 αθθ −=






 ag
dt

d
a  

)cos(cos
2

1
2

αθθ −=






 g
dt

d
a  

Differentiating w. r. to t 
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






 −−=






















 0sin2
2

1
2

2

dt

d
g

dt

d

dt

d
a

θθθθ
 

θθ
sin

2

2

a

g

dt

d −=  

Replacing q by x, so  

0sin
2

2

=+ x
a

g

dt

xd
                            (1) 

is a non-linear differential equation of first order . 

If x is small, then xx =sin , so it becomes linear 0
2

2

=+ x
a

g

dt

xd
, if the damping (or resistance) 

force is proportional to velocity, then the equation of motion is  

0sin
2

2

=+






+ x
a

g

dt

dx

m

c

dt

xd
                         (2) 

is a non-linear differential equation of 2nd order.  

Also 0)1( 2
2

2

=+−+ x
dt

dx
x

dt

xd µ                    (3) 

is a non-linear vander pol equation. 

Now, we consider a 2nd order non-linear differential equations of the form 








=
dt

dx
xf

dt

xd
,

2

2

                         (4) 

Autonomous System and Phase Plane-   Suppose a particle of unit mass moves on the x axis 

and 








dt

dx
xf , is the force acting on it, then the values of pair 







 )(),( velocity
dt

dx
positionx are 

called the phase of the system at each instant and the plane containing x and 
dt

dx
is called the 

phase plane.  

Introducing the new variable
dt

dx
y = , then the 2nd order non-linear differential system (4) is 

equivalent to the system  
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),()(
2

2

yxfy
dt

d

dt

xd

y
dt

dx

==

=
i.e       

),( yxf
dt

dy

y
dt

dx

=

=
                           (5) 

A system of the form ( ))(),( tytxf
dt

dy =  is called a non-autonomous differential system and a 

system ( )yxf
dt

dy
,=  in which the RHS does not contain the independent variable is called a 

autonomous differential system.  

The functions )(tx and )(ty (where t is a parameter) are the solutions of (5) and define a curve in 

the x-y plane, which is also called the phase plane because 






 =
dt

dx
yx, . 

Now in general, we consider a system of the form  

),(

),(

yxG
dt

dy

yxF
dt

dx

=

=
                                        (6) 

Where ),( yxF and ),( yxG are continuous functions of x & y and have continuous first partial 
derivatives in the phase plane.  

Note- If 0t is any number and ),( 00 yx is any point in the phase plane the there exists a unique 

solution 
)(

)(

tyy

txx

=
=

of (6) with
00

00

)(

)(

yty

xtx

=
=

. 

Path- If both the functions )(tx and )(ty  are not constant functions, then the solution 
)(

)(

tyy

txx

=
=

of 

(6) is a curve in the phase plane and it is also called a path of the system. 

Note- If 
)(

)(

tyy

txx

=
=

is a solution of (6) then 
)(

)(

ctyy

ctxx

+=
+=

is also a solution of (6) for any constant c. 

Thus each path is represented by many solutions which differ from one another only by a 
translation of parameter. 

Critical  Points- The points ),( 00 yx at which both the functions F and G vanish 
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i.e  0),( 00 =yxF  and 0),( 00 =yxG are called the critical points of the system 

),(

),(

yxG
dt

dy

yxF
dt

dx

=

=
and 

at such a point a unique constant solution 
0

0

yy

xx

=
=

exists  and it is not a path.  Hence no path goes 

through a critical point. 

Isolated Critical  Point- A critical point ),( 00 yx is said to be an isolated critical point if there 

exists a circle centered on ),( 00 yx that contains no other critical point. 

Note- The followings are needed to describe a phase portrait of two dimensional fluid motion, 

1. The critical points. 
2. The arrangement of paths near critical points. 
3. The stability of critical points. 
4.  Closed paths.  

 Example- Describe the phase portrait of the following 

1- 

0

0

=

=

dt

dy
dt

dx

            2- 
0=

=

dt

dy

x
dt

dx

           3- 
y

dt

dy

x
dt

dx

−=

−=
 

Solution-1.For critical points putting each of F and G equal to zero so F(x, y)=0 and G(x, y)=0 
for all values of x and y. Therefore each point of a phase plane is a critical point. For paths either 

we integrate separately ),( yxF
dt

dx = and ),( yxG
dt

dy = or we integrate ),(

),(

yxF

yxG

dt

dx
dt

dy

= . 

So on integrating 0&0 ==
dt

dy

dt

dx
we have 21 & cycx == . Hence no path exists(because both 

x and y are constant functions). 

Answer 2-  every point on y axis is a critical point and paths are horizontal half linesdirected out 
to the left and right from y axis. 

Answer 3- point (0, 0) is the only critical point, and paths are half lines of all possible slopes 
directed in toward the origen. 

Example- Find the critical points of the following 
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1- 0)2( 23
2

2

=−+−+ xxx
dt

dx

dt

xd
 

2- 
yx

dt

dy

xy
dt

dx

−=

+−= 652

 

Solution- 1 putting y
dt

dx = in 0)2( 23
2

2

=−+−+ xxx
dt

dx

dt

xd
, so it becomes  

yxxx
dt

dy

y
dt

dx

−−+=

=

)2( 23

                                                                                                                                (1) 

For critical points putting 0)2(&0 23 =−−+= yxxxy , we have 0)2(&0 2 =−+= xxxy  

2,1,0 −=x  

So the critical points are )0,2(&)0,1(),0,0( − . 

Answer-2 ).3,3(&)2,2(  
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Unit- III 

Critical Points & Stability for Linear Systems- Let us consider an autonomous linear system 
with constant coefficients 

),(

),(

yxG
dt

dy

yxF
dt

dx

=

=
                  (1) 

Then (1) can be written as  

ybxa
dt

dy

ybxa
dt

dx

22

11

+=

+=
                        (2) 

has a critical point )0,0( . Suppose 
tm

tm

Bey

Aex

=

=
be the solution of (2) and if 0

22

11 ≠
ba

ba
, then the 

auxiliary equation of system (2) is 

0)()( 122121
2 =−++− babambam                     (3) 

and it is a quadratic equation in m. The nature of a critical point of (2) is determined by the 
nature of roots 21 & mm of (3) which can be classified in two categories such as major cases and 

minor cases. 

Major  Cases: Case 1- The roots 21 & mm are real, distinct and of same sign, then the critical 

point is a node i.e 

)&(

)&(
21

unstableNode

stableallyasymptoticNode

mm

++
−−

≠
 

Case 2- The roots 21 & mm are real, distinct and of opposite signs, then the critical point is a 

saddle point i.e 

)&(
21

unstablesaddle

mm

+−
≠

 

Case 3- The roots 21 & mm are conjugate complex numbers, but not purely imaginary, then the 

critical point is spiral i.e 
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



−
+−

=
)&(

)&(
& 21 unstablespiraliba

stableallyasymptoticspiraliba
mm  

and ±=
dt

dθ
 

Borderline cases: Case 4- The roots 21 & mm  are real and equal, then the critical point is a node 

i.e )&(021 stableallyasymptoticnodemmm <== and if 

)&(021 stableunnodemmm >== . 

Case 5- The roots 21 & mm are purely imaginary, then the critical point is a centre and stable, but 

not asymptotically stable.  

Example- For each of the given linear system , find (1) Critical points (2) find the general 
solution  (3) find the differential equation of paths (4) solve the equation of paths (5) sketch a 
few of the paths (6) discuss the stability of critical points. 

a- 
y

dt

dy

x
dt

dx

2−=

−=
      b- 

x
dt

dy

y
dt

dx

−=

= 4
 

Solution: a- Here (1) the critical point is )0,0( , (2) solution is 
t

t

ecy

ecx
2

2

1

−

−

=

=
 , (3)  

x

y

dx

dy 2= , 

(4) 2xcy = , (5) paths are exponential curves, (6) since both the limits 

)(lim)(lim tyandtx tt ∞→∞→ exist, then the critical point is asymptotically stable. 

Note- If ∞→tlim both )(tx and )(ty exist, then the critical point is asymptotically stable and if

∞→tlim one of these )(tx and )(ty exist, then the critical point is unstable. 

Solution b- (1) )0,0( , (2) 
tctcy

tctcx

2cos2sin

2sin22cos2

21

21

+−=
+=

,   (3) 
y

x

dx

dy

4
−= , (4) 1

4 2

2

2

2

=+
c

y

c

x
,   (5) 

stable but not asymptotically stable. 

Note- Stable and unstable critical  points: A critical point is said to be stable, if for each 
positive number R there exists a positive number Rr ≤ such that every path which is inside the 

circle 222 ryx =+ for some 0tt = remains inside the circle 222 Ryx =+ for some 0tt > . A 

critical point is said to be asymptotically stable, if it is stable and there exists a circle 
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2
0

22 ryx =+ such that every path which is inside this circle for some 0tt = , approaches the origin 

as ∞→t and if the critical point is not stable, then it is called unstable. 

                      

Theorem- The critical point )0,0( of the linear system 

ybxa
dt

dy

ybxa
dt

dx

22

11

+=

+=
is stable if and only if the 

roots of the auxiliary of the given system have non positive real parts, and it is asymptotically 
stable if and only if both roots have negative real parts.  

Proof- The auxiliary equation of the given system can be written as  

0))(( 2
21 =++=−− qpmmmmmm                  (1) 

Where 2121 &)( mmqmmp =+−= , let us consider p and q axes and excluding the case 0=q , 

then by (1), we have 
2

4
,

2

21

qpp
mm

−±−
=       

Now the three cases arise −+=− orqp ,042  

If 042 =− qp , i.e on the parabola 042 =− qp ,them the roots 21 & mm are real and equal and the 

critical points are node.  

If 042 <− qp , then the roots 21 & mm are complex conjugate numbers, the critical points are 

spirals and centers.  
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If 042 >− qp , then the roots 21 & mm are real, distinct and the critical points are saddle points. If 

042 >− qp and 0<q , then the roots 21 & mm are real and distinct, then the critical points are 

spirals. 

Theorem- The critical point )0,0( of the linear system 
ybxa

dt

dy

ybxa
dt

dx

22

11

+=

+=
is asymptotically stable if 

and only if the coefficients )(&)( 122121 babaqbap −=+−= of the auxiliary equation are both 

positive.  

Example- Determine the nature and stability properties of the critical point )0,0( for each of the 

following linear autonomous systems  

1.  
yx

dt

dy

yx
dt

dx

54

2

−=

−−=
             2. 

yx
dt

dy

yx
dt

dx

32

43

+−=

+−=
       3.  

yx
dt

dy

yx
dt

dx

68

34

−=

−=
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Solution 1- Let 

yx
dt

dy

yx
dt

dx

54

2

−=

−−=
    

For critical points solving
054

02

=−
=−−

yx

yx
, we have )0,0(),( =yx  

The auxiliary equation is 0)85()51(2 =++−−− mm  i.e 01362 =++ mm  

i.e im 23±−= , since 21 & mm are complex conjugate numbers 0& <± aiba , then the critical 

point are spirals and asymptotically stable.  

Answer 2- Unstable saddle point   

Answer 3- The critical point is not isolated. 

Stability by Liapunov’s Direct Method- Liapunov’s direct method is used for studying the 

stability problems of a linear autonomous system 

),(

),(

yxG
dt

dy

yxF
dt

dx

=

=
   (1) with an isolated critical 

point )0,0( . Let [ ])(),( tytxC = be any path of (1) and ),( yxE be any function which is 

continuous and has continuous first partial derivatives in a region containing this path. If a point 
moves along this path with )(&)( tyytxx == , then ),( yxE can be regarded as a function of t 

and the rate of change of ),( yxE with respect to t is  

G
y

E
F

x

E

dt

dy

y

E

dt

dx

x

E

dt

dE

∂
∂+

∂
∂=

∂
∂+

∂
∂=

                                                              (2) 

is called a Liapunov’s direct method. 

Positive Definite- A function ),( yxE  is said to be positive definite, if 

)0,0(),(0),(&0)0,0( ≠∀>= yxyxEE . 

Negative Definite- A function ),( yxE is said to be negative definite, if 

)0,0(),(0),(&0)0,0( ≠∀<= yxyxEE .  

Positive Semi Definite- A function ),( yxE is said to be positive semi definite, if 

)0,0(),(0),(&0)0,0( ≠∀≥= yxyxEE . 
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Negative Semi Definite- A function ),( yxE is said to be negative semi definite, if 

)0,0(),(0),(&0)0,0( ≠∀≤= yxyxEE . 

Note- Let us consider a positive definite function ),( yxE  of the form  

nm byaxyxE 22),( += ,where ba & are positive constants and nm & are positive integers. 

Liapunov’s Function- A positive definite function ),( yxE is said to be a Liapunov function if 

G
y

E
F

x

E

dt

dE

∂
∂+

∂
∂=   is negative semi definite i.e 0≤

dt

dE
, so it is a decreasing function. 

Theorem- The function   22),( cybxyaxyxE ++= is positive definite, if and only if 

04&0 2 <−> acba , and is negative definite if and only if 04&0 2 <−< acba  and is neither if 

04&004&0 22 >−<>−> acbaoracba  

Example- Determine whether each of the following function is positive definite, negative 
definite or neither:  

A- 22 yxyx −−             B-  22 332 yxyx +−      C- 22 32 yxyx −+−   D- 22 54 yxyx −−−  

Solution A- Here 22),( yxyxyxE −−= comparing 054&01 2 >=−>= acba so it is neither. 

Answer B- Here 22 332),( yxyxyxE +−= comparing 0154&02 2 <−=−>= acba , so it 

positive definite.  

Answer C- Here 22 32),( yxyxyxE −+−= on comparing 014&02 2 >=−<−= acba , so it is 

neither. 

Answer D- Here 22 54),( yxyxyxE −−−= on comparing 044&01 2 <−=−<−= acba , so it is 

negative definite.  

Example – Show that )0,0( is an asymptotically stable critical point for each of the following 

systems:  

A- 
35

3

2

3

yx
dt

dy

yx
dt

dx

−=

−−=
                           B- 

322

32

yyx
dt

dy

xyx
dt

dx

−−=

+−=
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Solution- Let 
35

3

2

3

yx
dt

dy

yx
dt

dx

−=

−−=
                              (1) 

On comparing 353 2),(&3),( yxyxGyxyxF −=−−= , Now we consider 
nm byaxyxE 22),( += where nmba &,, are to be determined. The critical point )0,0( will be 

stable, if G
y

E
F

x

E

dt

dE

∂
∂+

∂
∂= , is negative semi definite i.e  

)2(2)3(2 3512312 yxbnyyxamx
dt

dE nm −+−−= −−  

221251222 4226 +−−+ −+−−= nnmm bnyybnxyamxamx
dt

dE
will be negative semi definite if  

1251212512 22.022 −−−− ==+− nmnm ybnxyamxeiybnxyamx  

equating the powers of yx & and also the coefficients of xy on both sides, we have  

1112&3512 =⇒=−=⇒=− nnmm and 3&126 ==⇒= baba  

So 26 3),( yxyxE += . 

Similarly 2nd part can be solved 

Answer 2- 22),( yxyxE +=  

Example- Show that )0,0( is an unstable critical point for the system  

52

32

yx
dt

dy

xxy
dt

dx

+−=

+=
 

Solution- Let us assume contradictory that )0,0( is a stable critical point so  

42122222 2224 +−+ +−+= nnmm bnyybnxamxyamx
dt

dE
 will be negative semi definite if  

2&1&124 1222 ====⇒= − banmybnxyamx nm
, for these values of banm &,, , the value of  
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0>
dt

dE
Hence the critical point origin is unstable. 

Green Function- Let us consider an nth order linear homogeneous differential equation 
0)( =yL                        (1) 

where L is a differential operator given by  

)()()()(
1

1

10 xp
dx

d
xp

dx

d
xpyL nn

n

n

n

+++= −

−

                (2) 

where )(),(),( 10 xpxpxp n are continuous functions on [ ]ba, and the boundary 

conditions are  

nkyVk ,2,1,0)( =∀=                  (3) 

Where )()()()()()()( '1)1()1('')2(')1( bybyayayayayyV kk
nn

kkkkk ββαααα ++++++= −−  

                     )()( )1()1('')2( byby nn
kk

−−+++ ββ                                                  (4) 

Where the linear forms nVVV ........, 21  in 

)().......(),(),().....(),( )1(')1(' bybybyayayay nn −− are linearly independent. 

Suppose the homogeneous boundary value problem given by (1) to (4) has only a trivial solution 
0)( =xy . The Green function of the boundary value problem (1) to (4) is the function ),( txG

constructed for any point t in bta <<  and has the following properties 

1- In each of the interval [ ) ( ]btta ,&, the function ),( txG is considered as a function of x 

and is a solution of (1) i.e 0)( =GL .                (5) 

2- ),( txG is continuous and has continuous partial derivatives with respect to x up to )2( −n

orders on bxa ≤≤ . 
3- The )1( −n th derivative of ),( txG with respect to x at tx = has a discontinuity of Ist kind 

and the jump being equal to 







−

)(

1

0 tp
i.e  

      







−=









∂
∂−









∂
∂

−=
−

−

+=
−

−

)(

1

00
1

1

0
1

1

tpx

G

x

G

tx

n

n

tx

n

n

 

4- ),( txG satisfies the boundary conditions  nkGVk ....2,1,0)( == . 

Note- If the boundary value problem ( 1) to (4) has only a trivial solution 0)( =xy , then the 

operator L has a unique Green function ),( txG . 
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Example- Find the Green function of the following boundary value problems  

1- 0)()0(,0'' === lyyy                     2-    0)1()0(,02'' ===+ yyyy µ  

3- 0)1(&)0(,0
1''' ==






−+ yfiniteisyy
x

yxy  

Solution 1- Let 0)()0(0'' === lyyy                                                   (1) 

First, we show that (1) has a zero or trivial solution. 

For this integrating (1) twice with respect to x, then the solution of (1) is  

bxay +=                                                                                                                        (2) 

Using the boundary conditions 00)0( =⇒= by  and 000)( =⇒=⇒= aally  

Hence 0)( =xy is a zero or trivial solution of (1). So (1) has a Green function  

   




≤<+
<≤+

=
lxtbxb

txaxa
txG

21

21 0
),(  

Now ),( txG satisfies the following properties 

(1) ),( txG is continuous at tx = so )()( 22112121 batabatabtb −=−⇒+=+                      (3) 

(2) ),( txG has a discontinuity of magnitude 
)(

1

0 tp
 i.e 

11 11
00

−=−⇒−=








∂
∂−









∂
∂

−=+=

ab
x

G

x

G

txtx

                                                                     (4) 

(3) ),( txG  satisfies the boundary conditions 000.0),0( 221 =⇒=+⇒= aaatG            (5) 

   00),( 21 =+⇒= blbtlG                                                                                       (6) 

From (3) & (4) tba −=− 22                                                                                    (7) 

Solving (3), (4), (5), (6) & (7) we have 
l

t
a

l

t
btb −=−== 1,, 112  

Therefore 










≤<−

<≤−

=
lxt

l

xlt

tx
l

tlx

txG
)(

0
)(

),(  

Answer 2- Solution 
µµ

µµ
µµ

µ
µ
µ

sin

cossin
&

sin

)1(sin
,

sin
,0 2211

t
b

t
a

t
ba −=−−===  
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









≤<−−

<≤−−
=

1
sin

)1(sinsin

0
sin

sin)1(sin

),(
xt

tt

tx
xt

txG

µµ
µµ
µµ

µµ

 

Answer 3 Let 0)1()0(0
1''' ===−+ yfiniteyy
x

yxy               (1) 

Solution- (1) can be written as 0)1()()0(0'''2 ====−+ ysaykfiniteyyxyyx  (2) 

Putting )1(,&
2

2
2 −==== DD

dx

d
xD

du

d

dx

d
xex u in (2), we have  

  0)1( 2 =− yD                                                                                                                  (3) 

The solution of (3) is  

x

b
xay +=  













≤<






 −









<≤






 −









=
1

1

2

0
1

2
),(

2

xt
x

xt

tx
t

tx

txG  

Sturm’s Comparison theorem: Let us consider two system of 2nd order differential equations 

( ) ( ) )2(0)()(&)1(0)()( 2

''
21

''
1 =+=+ utqutputqutp and assume that  

1- )(&)(),(),( 2121 tqtqtptp are continuous on the [ ]ba, . 

2- )(&)( 21 tutu  are the non trivial solutions of the given system of equations. 

3-  equation (2) is a sturm majorant of (1) on [ ]ba, . 

4- the inequality  
)(

)()(

)(

)()(

2

'
22

1

'
11

au

auap

au

auap ≥  holds, and the LHS & RHS become infinite 

when 0)(&0)( 21 == auau . 

5- )(1 tu  has exactly 1≥n zeros at ntttt .........., 21= where nttt <<< ...........21 of ( ]ba, . 

Then the solution )(2 tu has at least n-zero on( ]nta, . 

Proof: Let us define a pair of continuous functions say )(&)( 21 tt φφ by  
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







= −

)()(

)(
tan)(

'
11

11
1 tutp

tu
tφ                      (1) 









= −

)()(

)(
tan)(

'
22

21
2 tutp

tu
tφ                         (2) 

on the [ ]ba, for 2,1,0 =∀<≤ ii πφ (only principle values).  

Since 
)()(

1

)()(

1

)(

1

)(

1
)()(

'
22

'
1121

21 tutptutptptp
tptp ≤⇒≤⇒≥ so for a particular value at at = , 

we have 
)()(

)(

)()(

)(
'
22

2
'
11

1

auap

au

auap

au ≤  hence πφφ <≤≤ )()(0 21 aa  

Also by prufer’s transformation 

1
2

11
2

1

'
1 sin)(cos

)(

1
)( φφφ tq

tp
t +=                   (3)    

2
2

22
2

2

'
2 sin)(cos

)(

1
)( φφφ tq

tp
t +=                   (4) 

Putting 2,1,sin)(cos
)(

1
),( 22 =∀+= itq

tp
tf iii

i
i φφφ    using in (3) & (4), we have  

2,1),(),()(&),()( '
2

'
21

'
1 =∀=⇒== itftfttft ii φφφφφφ                   (5) 

The solution of (3) is )(1 tφ  with condition ))(,( 1 aa φ and the solution of (4) is )(2 tφ  with 

condition ))(,( 2 aa φ . 

Since [ ]bat
tptp

tptp ,
)(

1

)(

1
)()(

21
21 ∈∀≤⇒≥ so by (5), we have 

)},({)},({ 2
'
11

'
1 φφφφ tftf =≤= on integrating, we have [ ]battt ,)()( 21 ∈∀≤ φφ so putting  

ntt = we have )()()( 221 nnn tntt φπφφ ≤⇒≤ since )(1 tφ has exactly n zeros on ( ]ba, . This implies 

)(2 tu has at least n zeros on ( ]nta, (where btn = ). 

 Corollary: The zeros of two linearly independent solutions )(&)( 21 tutu of 

( ) 0)()( 1

''
1 =+ utqutp interlace, i.e between any two consecutive zeros of one solution there lies a 

zero of the other solution. 
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Proof: Let )(&)( 21 tutu be any two solutions of( ) 0)()( 1

''
1 =+ utqutp                                (1) then 

both )(&)( 21 tutu satisfy (1) so  

( ) 0)()()()( 11

''
11 =+ tutqtutp                        (2) 

( ) 0)()()()( 21

''
21 =+ tutqtutp                   (3) 

 Let 21 & tt be any two consecutive zeros of )(1 tu so )(0)( 2111 tutu == .  

Subtracting on multiplying (2) by 2u and (3) by 1u and then integrating between the limits 21 ttot

, we have  

{ }[ ] 0)()()()()( 2

11
'
22

'
11 =− t

ttututututp  

Or 

{ }[ ] { }[ ] 0)()()()()()()()()()( 111
'
2121

'
111212

'
2222

'
121 =−−− tututututptututututp  

putting )(0)( 2111 tutu == , so it become  

)()()()()()( 121
'
111222

'
121 tututptututp = .  

Since )(&)( 2
'
11

'
1 tutu are of opposite signs so )(&)( 2212 tutu will be of opposite signs. Hence 

)(2 tu has at least one zero between 21 & tt . 

  

 

 

 

 

 

 

 

 

 

 


