Unit - 1l

Linear Systems-Let us consider a system of first order differdngguations of the form

dx _

g F(xy) "
dy _

p G(xy)

Where t is an independent variable. And x & y@dependent variables.

The system (1) is called a linear system if botky i and G(x, y) are linear in x and y.
dx
— Fat)x+b(t)y+ f,(t)

Also system (1) can be written zgé (2)
o =B Ox DOy 1,0

Wherea, (t),b (t) and f, (t) Ci =1,2 are continuous functions ({a, b].

Homogeneous and Non-Homogeneous Linear System3he system (2) is called a
homogeneous linear system, if bofhpt apyl f, € )are identically zero and if bott, t @hd
f,(t) are not equal to zero, then the system (2) isatalleon-homogeneous linear system.

= X(t)

X =
Solution- A pair of functions
y =

().

defined on[a, b] is said to be a solution of (2) if it satisfies

— =4X-y ... A

Example- gt ) (3
Y- 2X+Y . B
dt

_ ax .. . d®x  _dx e q . :
From A, y—4x—a putting in B we obtalnF—SE+6x—Ols a 2 order differential

— A2t
equation. The auxiliary equation ig? —5m+6=0=m=2,3s0 X putting x =€*in A, we

x=e"

obtain y=2e”again puttingx=€*in A, we obtainy =e*. Therefore the solutions of (3) are

x=e" x=e"
and (4)
2t 3t
y=2e y=e




Theorem-1 If t,is any point of[a,bjand x,& y,are any two numbers, then the system (2) has a

= X(t t.)=
unique solution. x(t) with X(t) %
y = y(t) y(to) = Yo

& x+h(t)y

Theorem-2If the homogeneous syste (5)
o = a0x b0y

X=X (t X=X, (t
has two solutions Xi()an (1)

6
y=V(t) y=Y,() ©)

on[a,b]. Then” Gx )+ €% (0 (7)

Yy =Cyyi(t) +C,Y, (1)

is also a solution of (5) o[a, b] for any two constants, andc,.

=X (t = t
Theorem-3 If the two solutionsx % (1) and X=X

(6) of the homogeneous system (5)
y=Y() Y =VY,(t)

=c,x(t)+c t
have a wronskia(t) that does not vanish da,b], then x=ex 0+ X0 (7) is a general
y=C.y;(t) +C,Y,(t)

solution of homogeneous system (5) [a[‘o].

Note- The wronskian W(t) of the solutions (4) is

3t 2t
S)
W(t) =
e3t 2 e2t
- e5t

Theorem -4 The wronskian W(t) of two solutions (6) of homogeug system (5) is either
identically zero or nowhere zero {ab]i.e

W(t) = 0(linearly dependent) okV(t) # O (linearly independent).

The wronskian W(t) satisfies the differential equla,tdd—vtv =[a1(t)+b2 (t)]\N and on integrating

between the limits 0 to t we obtain

[la®+by (01t
W(t) =ce®




= t = t
Theorem -5If the two solutionsX % (1) and X=X
y=Yy,(t) y=Y,(t)

x=x_(t)
independent mﬁa, b] and if " " is any particular solution of non-homogeneous sy<2)

X=X (1) + €%, (1) + X, (t)
y=Cy,(t) +C,y, (1) +y, (1)

of homogeneous system (5) are linearly

on[a, b], then is a general solution of of non-homogeneous system

(2) on [a, b] :
X = At X = -2t
Example- Show that i and , are the solutions of the homogeneous system
y=¢€ y=-¢
R x = x(t)
and find the particular solution of the given system for whick(0) =5and
Y gy y=y(t)
dt
y(©) =1
™. X+3y
Solution- Let gt (1)
& o ax+ y
dt
- At :e—2t
First, we show that each of the pai(lr and X a satisfy the system (1). In order to

y=¢e" y=-¢€

. . . . X=CyX (1) +C,%, (1) .
determines a particular solution of (1), let us sidar (2) be a particular

y= Clyl(t) *tCY, (t)
solution of (1), where the constanfand c,are to be determined. Putting the values of
x(t)=€e", x,(t)=e®, vy (t)=€e" and y,(t)=—-e*in (2) and using the given conditions
X(0) =5and y(0) =1, we obtainc, = &ndc, = 2

x=3e" +2e*

Therefore e _ 9 is a particular solution.
y= <€

X=3-2
Example Show that 3 is a particular solution of the non-homogeneowsdesy




%=x+2y+t—1
dt

g and write the general solution of this system.
d—{ =3x+2y-5t-2

%=x+2y+t—1
dt

Hint- Let ) (1
dy _
— =3Xx+2y-5t-2
dt
X=3-2 . . - .
Now y=—2t +3W|II be a particular solution of the non-homogeneaystem (1) if it satisfies
the system (1). In order to find a general solutmrsystem (1), we have to find a solution
L X+2y
corresponding homogeneous syst(gln (2) to system (1) as similar in example in
d—i/ =3x+2y

equation (3).

x=2ce" +c,e"t +3t -2

Answer- at L
y=3ce" -c,e —2t+3

Homogeneous Linear Systems with Constant Coefficiést Let us consider a homogeneous

dx

— =ax+hby
linear system with constant coefficiengé (2)

y _
— =a,Xx+b
ot &, LY
- Aemt 2

Where a,, b, a,and b, are constants. Suppoi,/e: Be™ (2)

(where A, Band m are to be determined) be a solution of tlséesy (1), then it satisfies (1) so
Ame™ =(a,A+b,B)e™
Bme™ =(a,A+b,B)e™

Or

(a,-mA+bB=0
a,A+(b,-mB=0




is a system of equations of the forax =0 has a trivial solutionx=0, if A=B=0 so for a
nontrivial solutionx # 0 of (3), we havea=0i.e

‘1_ ; :331 ,J =0, on expanding we obtain a quadratic equation in m
-
M’ - (a, +b,)m+ (ab, ~ah) =0 @)

gives two values of m say, and m,. Now the following three cases arise

Case-1If m and m,are real and distinct, th@orresponding tm,, we find the values of A and

x=Aem
B say A and B,by equation (3), so the first nontrivial solutios i 21 mt Similarly
y=be
. . .  x=Ae™
corresponding tm,, we find the another nontrivial solution B gm!
y=5b,e~
x = (Ae™) +C,(Ae™)
Therefore the general solution is . et
y = Cl(Bleml ) + CZ(BZe ? )
Example- Find the general solution of the system of equneti
% =X+Yy
dt
Y 4x -2y
dy
dx
a Y
Solution- Let | 1)
Y- ax- 2y
dy

On comparinga, =1b,=1a, =4and b, =-2 the auxiliary equation isn’ +m-6=0gives
m=-3 2

)gl— mA+B=0

Where A and B satisf (2)
4A+(-2-mB=0
x=e™
Whenm= -3, then by (2) we geA =1, B=-4and the first nontrivial solution is s
y=-4ae




Similarly form=2, then by (2) we getA=1 B=1and the another nontrivial solution is

x=e*
y=4e*
=ce™ +c,€°
Therefore the general solutlon is
y=-4ce™ +c,e’

d—f[( =-3+4y
Example- Find the general solution of the syste

& - _ox+ 3y

dy

x=2ce" +c,€
Answer- Cl_t 3
y=ce +ce

Case-2If mand m,are conjugate complex numbers of the foamib, where a and b are real

- Ai (a+|b)t

numbers withb # 0, then we consider two linearly independent sohﬁlo (arib); (1) and
y=Be
x = Ao * * . *
Bt whereA = A +iA,, B =B, +iB,, A, = A —iA,and B, = B, —iB,resp. Putting
y=b,€

the values ofA and B, in (1), we have

X = (A +iA,)e* (cosbt +isinbt)
=(B, +iB,)e* (cosbt +isinbt)

Or

x = e*[(A cosbt — A, sinbt) +i(A sinbt + A, cosht)]
y = e*[(B, cosbt - B, sinbt) +i(B, sinbt + B, cosht)]

Equating real and imaginary parts, we obtain twedrly independent solutions say

x =€ (A cosbt - A, sinbt) a) anolx=eE“(Aisinbt—Azcosbt) )
y = e (B, cosbt — B, sinbt) y =e* (B, sinbt — B, cosht)

Therefore the general solution is

x = e*[c, (A cosbt — A, sinbt) +c, (A sinbt + A, cosht)]
y = e*[c, (B, cosbt - B, sinbt) + ¢, (B, sinbt + B, cosbt)]




Example-

Hint- Ot L

The auxiliary equation ism®-6m+18=0givesm=3+3i, taking a nontrivial solution
x=(A +iA,)e* (cos3t +isin3t)
y=(B, +iB,)e* (cos3t +isin3t)
this (2) satisfies (1) and equating the coeffigesftcos3t and sin3t on both sides.

(2) of (1), whereA,B,, A,and B, are to be determined. For

x =e* (2c, cos3t + 2c, sin3t)

Answer- _ _
y=¢€" [c1 (cos3t + 3sin3t) +c, (sin3t — 3cos3t)]

Case -3If m =m, =mare equal roots then we should have only one lipeatution

x = Ae™ X = Ate™
and the & linearly independent solution will be of the form . But actually,
y = Be™ y = Bte™

we consider the™ linearly independent solution

x= (A + A"

(B.+B.1) » WwhereA,B,A, A,, B;and B, are to be determined.
y=(B, +B,t)e"

x=c,Ae™ +c,(A +At)e™

Therefore the general solutien
y=c,Be™ +c, (B, +B,t)e™

Example- Find the general solution of the system

dx

— =3x-4
dt y
dy

—Z =xX-

a Y




%=3x—4y

Solution- Let o (2)
ﬂ =X- y
dt

The auxiliary equation is

m* -2m+1=0

m=11
= Aé
Let " )
y =B¢
be a solution of (1), where A and B satisfy
2A-4B=0 givesA=2 B=1,s0
A-2B=0
x=2¢'
‘ 3)
y=¢€
be a first linearly independent solution of (1). Wensider the second linearly independent
Xx=(A +At)e
solution of (1) of the form (A+ Al 4)

y=(B,+ th)et
so it satisfies (1)

(2A - A —-4B))+ (2A -4B,)t=0+0t

on equating both sides we have
(A -2B,~B,)+(A,~2B,)t =0+0t

2A -A,-4B, =0 -2B,-B,=0
A-A-4B,=0  A-2B-B, -
2A -4B, =0 A -2B,=0
On solving the equations in (5), we obtadn=1,B, =0, A, =2 & B, =1
The another linearly independent solution is

x= 1+ 2t)e
y=te'

Therefore the general solution is




x=2ce" +c, 1+ 2t)e

— t t
y=ce +c,te

Example- Find the general solution of the system

dx
— =5Xx+4
dt y
dy _

= =—x+
dt y

x=-2c,e™ +c, (1+2t)e*
Answer- & 1+ 2)
y=ce” —c,tedt

Non-Linear Systems: Volterra’s Prey- Predator Equatons-

Everyone knows that there is a constant struggledovival among different species of animals
living in the same environment. One kind of animialvives by eating another and a second by

For an example of this universal conflict betweka predator and its prey, let us imagine an
island inhabited by foxes and rabbits. The foxesrabbits and the rabbits eat clovers. Let us
assume that there is so much clovers then thetsabave an ample supply of food. When the
rabbits are abundant, then the foxes flourish aed@ population grows. When the foxes become
too numerous and eat too many rabbits, then theégr ento a period of famine and their
population begins to decline. As the foxes decreid®n the rabbits become relatively safe and
their population starts to increase again. Thusaxe an endless repeated cycle of the increase
and decrease in two species of animals and théufitions in two species are given by the
following figure

Rabbits

If x and yare the number of rabbits and foxes at any tirtteety in the presence of an unlimited
supply of clovers,

——
©
| —



The rate of change of rabbits %’t)s =ax, a>0, after some encounter between the rabbits and

foxes the rate of change of rabbits%@[é =ax—hxy,a,b>0 (1)

dy

In the absence of rabbits the foxes die and tree ahthange of foxes iSdT =-cy, ¢>0 and

after some encounter of foxes with rabbits thepydation grows and the rate of change of foxes
become

%:—cy+dxy, c,d>0 ()

These two equations are called the volterra’s preglator equations.

For the solution of these equations, we divideb§2j1)

dy
dt _—y(c-dx)
dx  x(a-by)
dt
Or
dy _ —y(c-dx 3
dx x(a-hy)
on separating the variables, we have
(c—dx)dx N (a—by)dy _ 0
X y
j(E-djdx+j(3—b]dy:o
X y
On integrating, we have
clogx+alogy =dx+by+logK %

or x°y® = Ke®™*™
In order to determine K putting(t,) = X,, Y(t,) = Y,in (4) so

K = X(c) yge—(d Xo*+bYyg)

10
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Therefore the solution of volterra’s prey- predaquations is
x°y? = (X(c) y2e (@oh% )e<dx+by>

Non-Linear Equations- Let us consider the motion of a pendulum congysé bob of mass m
attached to one end of a light rod of length @héf bob is pulled to one side through an angle
and then released, l@étbe the position of the bob after time t s.t. AQthgin by the principle of

conservation of energ) ,
Gain in kinetic energy =Loss in potential energy

% mv’ = mg(acosd —acosa)

%vz = ga(cosd - cos) (1)

ds dé L
Alsos=a#d, sov=—=a—, puttingin (1
g X Putting 1)

1 ,(dg)’
—a‘| — | =ag(cosfd-cosa
: (mj o )

1 (do)
—a — | =g(cosfd-cosa
Z{mj o )

Differentiating w. r. to t

11
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B

d’69_ g
a

sind

dt?

Replacing) by x, so

2
T;(+%sinx=0 1

is a non-linear differential equation of first orde

2
If x is small, thersinx=x, so it becomes Ilne%rt—2+gx:0, if the damping (or resistance)
a

force is proportional to velocity, then the equatal motion is

2
d—f+(£j%+gsinx=0 (2)
dt m)dt a

is a non-linear differential equation di’@rder.

2

d-x dx
Also ——+ u(x* -1)—+x=0 3
e H( )dt (3)

is a non-linear vander pol equation.

Now, we consider a"2order non-linear differential equations of thenfior

d?x dx
&+ a) @

Autonomous System and Phase Plane-Suppose a particle of unit mass moves on thesx a

and f(x, %} is the force acting on it, then the values of ;{a&( position), %(velocity) jare

called the phase of the system at each instantteglane containingcand %is called the

phase plane.

Introducing the new variabLe=%, then the 2 order non-linear differential system (4) is

equivalent to the system

12
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dx _ dx

gt e 3; (5)
X _

- "= = —2 =f

e (y) f(x,y) p (X, y)

A system of the for Zy = f(x(t) y(t)) is called a non-autonomous differential system and
system%= f(x, y) in which the RHS does not contain the independerigble is called a
autonomous differential system.

The functionsx(t) and y(t) (where t is a parameter) are the solutions of ii8) define a curve in

the x-y plane, which is also called the phase ptamaus%x, y= %)

Now in general, we consider a system of the form

dx

—=F (X’ y)

g (6)
dy _

p =G(x,Y)

Where F(x,y)and G(x,y)are continuous functions of x & y and have contumudirst partial
derivatives in the phase plane.

Note- If t,is any number andx,, y,)is any point in the phase plane the there existaique

= Xx(t) (tO):XO

solution of (6) w .
y=y(t) y(to) = Yo

X = X(t
Path- If both the functionsx(t) and y(t) are not constant functions, then the solution ((t)) of

(6) is a curve in the phase plane and it is allecda path of the system.

X=X =
Note- If y= y((t)) is a solution of (6) then (( ))IS also a solution of (6) for any constant c.

Thus each path is represented by many solutionshwdiffer from one another only by a
translation of parameter.

Critical Points- The points(X,, y,) at which both the functions F and G vanish

13
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X Exy)

i.e F(X,, Yo)=0andG(x,, Y,)=0are called the critical points of the systeglh and
o =6y)

. . X=X . -
at such a point a unique constant solution ° exists and it is not a path. Hence no path goes
=Y

through a critical point.

Isolated Critical Point- A critical point (x,, Y,)is said to be an isolated critical point if there

exists a circle centered dm,, Y,) that contains no other critical point.

Note- The followings are needed to describe a phasegutoof two dimensional fluid motion,

The critical points.

The arrangement of paths near critical points.
The stability of critical points.

Closed paths.

rwnNpE

Example- Describe the phase portrait of the following

dx dx dx

—=0 — =X — ==X
1 dt 2dt 3dt

@ _g @ _g @,

dt dt dt

Solution-1.For critical points putting each of F and G dgoazero so F(x, y)=0 and G(x, y)=0
for all values of x and y. Therefore each poinagfhase plane is a critical point. For paths either

dy
dx _ dy _ dt _ G(x,y)
we integrate separately; — FOY) and ot G Y or we integratedx ~ F(x,y)-
dt
dx _ dy _ _ _
So on integratingg; 0& ot Owe havé=% & Y= Hence no path exists(because both

x and y are constant functions).

Answer 2- every point on y axis is a critical point andhgaare horizontal half linesdirected out
to the left and right from y axis.

Answer 3- point (0, 0) is the only critical point, and patéue half lines of all possible slopes
directed in toward the origen.

Example- Find the critical points of the following

14
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d?x dx

1- —+—-(x*+x*-2x)=0
dt® dt ( )
%:y2—5x+6
2_ dt
dy
2 =x-
a7
2
Solution- 1 puttingd—? =vyin %+%—(x3 +x?-2x) =0, so it becomes
o
dt 1)
ﬂ:(x3+x2—2x)—y
dt

For critical points putting=08& (x*+x*-2x)-y=0, we havey =0 & x(x* +x-2) =0
x=0,1,-2
So the critical points ar®,0), 1, 0) & (-20).

Answer-2 (2,2) & (3 3).

15
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Unit- 111

Critical Points & Stability for Linear Systems- Let us consider an autonomous linear system
with constant coefficients

dx _
o F(xy) "

dy
= = G(x,
ot (X y)

Then (1) can be written as

dx
dt =axthy
(2

d
d_i/:azx"'bzy

x=Ae™
has a critical point(0,0) . Suppose Be™ be the solution of (2) and zi b,
=be 2 2

#z 0, then the

auxiliary equation of system (2) is

m’ - (a, +b,)m+(ab, —a,b) =0 (©)
andit is a quadratic equation in m. The nature of aaaitpoint of (2) is determined by the
nature of rootsam & m, of (3) which can be classified in two categorieshsas major cases and
minor cases.

Major Cases Case 1- The rootsn & m,are real, distinct and of same sign, then thecatiti
point is a node i.e

m # m
- - (Node& asymptotically stable)
+ + (Node& unstable)

Case 2- The rootsn, & m,are real, distinct and of opposite signs, thendtigcal point is a
saddle point i.e

m # m
- + (saddle& unstable)

Case 3- The rootsn, & m,are conjugate complex numbers, but not purely imegi then the
critical point is spiral i.e

16
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—a+ib(spiral & asymptotically stable)
m&m, =4 :
a—ib(spiral & unstable)

and— =4+
dt

Borderline cases:Case4- The rootsm, & m, are real and equal, then the critical point iDden
i.e m =m, =m<0(node & asymptotically stable)and if

m, =m, =m>0(node & unstable) .

Case 5- The roots, & m, are purely imaginary, then the critical point isemtre and stable, but
not asymptotically stable.

Example- For each of the given linear system , find (1) iCait points (2) find the general
solution (3) find the differential equation of pat(4) solve the equation of paths (5) sketch a
few of the paths (6) discuss the stability of catipoints.

dx dx

— ==X — =4y
a- gt b- gt

_y = —2y _y ==X

dt dt

. - . . Xx=ce" dy 2y
Solution: & Here (1) the critical point i€, 0), (2) solution is L 3) —=—

y=c,e dx X

(4)y=cx?, (5) paths are exponential curves, (6) since bothe limits

lim, . x(t) and lim,_ y(t)exist, then the critical point is asymptoticallglisie.

to o

Note- If lim,_ both x(t)and y(t) exist, then the critical point is asymptoticallylste and if

lim, _one of thesex(t) and y(t) exist, then the critical point is unstable.

to oo
X = 2c, C0S2t + 2¢, sin2t

y =-C,Sin2t +c,cos2t ’
stable but not asymptotically stable.

Solution b- (1) (0,0), (2) @ Y- X u 4X_;+y_22:1, (5)

dx 4y C

Note- Stable and unstable critical points: A critical point is said to be stable, if for déac
positive number R there exists a positive numbsrRsuch that every path which is inside the

circle x*+y? =r*for some t =t,remains inside the circlex’ +y? = R*for some t >t,. A
critical point is said to be asymptotically stabié,it is stable and there exists a circle

17
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x* +y? =rZsuch that every path which is inside this circlefomet =t,, approaches the origin
ast - o and if the critical point is not stable, then italled unstable.

dx
a Xt by
Theorem The critical point (0,0) of the linear system is stable if and only if the
— =a,X+b,y
dt

roots of the auxiliary of the given system have positive real parts, and it is asymptotically
stable if and only if both roots have negative pats.

Proof- The auxiliary equation of the given systean be written as
(m-m)(m-m,) =m’+ pm+q=0 (1)

Wherep=-(m +m,) & g=mm,, let us consider p and g axes and excluding tkeqca0,

- p4p°-4q

2

then by (1), we haven, m, =

Now the three cases arigep® —4q =0, + or —

If p>?-4q=0, i.e on the parabolg® —4q = 0,them the rootsm & m,are real and equal and the
critical points are node.

If p>-4q<0, then the rootsy & m,are complex conjugate numbers, the critical poants
spirals and centers.

18
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Stable
Asymptotically

Unstable <table

Spirals
Spifﬂli Centers

| >
{%5 _ Nodes
' : Nodes
: p
Unstable
ﬁkﬁ, Saddle points
Ty

If p>—4q >0, then the rootsn, & m, are real, distinct and the critical points are sagaints. If
p®>—4q>0and q<0, then the rootam, & m,are real and distinct, then the critical points are

spirals.
dx
ot by
Theorem- The critical point (0, 0) of the linear systemc| is asymptotically stable if
= a,x+b,y
dt

and only if the coefficientp=-(a, +b,) & q=(ab, —a,b, of the auxiliary equation are both
positive.

Example- Determine the nature and stability propertieghefcritical point (0,0) for each of the
following linear autonomous systems

%:—x—Zy %:—3x+4y %:4x—3y
1. 3;, z.gt 3. gt
_ y _ y _
= = 4x-5 2 =-2x+3 — =8x-6
ot Y ot Y ot Y

19
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— =-X-2y
Solution 1- Let gt
y _
— =4x-5
ot Y
For critical points solving x=2y=0 we have(x,y) = (0,0)
P e-sy=0" =0

The auxiliary equation isn® —(-1-5)m+ (5+8) =0 i.e m* +6m+13=0

i.e m=-3x2i, sincem & m,are complex conjugate numbeazib & a<O0, then the critical
point are spirals and asymptotically stable.

Answer 2-Unstable saddle point
Answer 3- The critical point is not isolated.

Stability by Liapunov’s Direct Method- Liapunov’s direct method is used for studying the

dx
—=F(xy)

stability problems of a linear autonomous syst (1) with an isolated critical
o =6(x)

point(0,0). Let C =[x(t),y(t)] be any path of (1) ande(x,y)be any function which is
continuous and has continuous first partial deiesgtin a region containing this path. If a point
moves along this path witk = x(t) & y=y(t), then E(X, y) can be regarded as a function of t

and the rate of change &f(x, y) with respect to t is

dE _ JE dx  OE dy

dt oxdt oy dt
Y @
is called a Liapunov’s direct method.

Positive Definite- A function E(x,y) is said to be positive definite, if
E00=0& E(x,y)>0 0O(xy)# (0,0).

Negative Definite- A function E(x,y)is said to be negative definite, if
E00=0& E(x,y)<0 O(x,y)# (0,0).

Positive Semi Definite- A function E(x,y)is said to be positive semi definite, if
E00) =0 & E(x,y)=0 0O(xY)# (00).
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Negative Semi Definite- A function E(x,y)is said to be negative semi definite, if
E00) =0 & E(xy)<0 O(xYy)# (00).

Note- Let us consider a positive definite functi&fx, y) of the form

E(x,y) =ax’™ +by*" ,wherea & bare positive constants amd & nare positive integers.

Liapunov’s Function- A positive definite functionE(x, y) is said to be a Liapunov function if

dE _%E F +6—EG is negative semi definite i.%tE <0, so itis a decreasing function.

d ox oy

Theorem The function E(x,y) =ax’ +bxy+cy’is positive definite, if and only if
a>0& b*-4ac<0, and is negative definite if and onlyaf<0 & b*-4ac<0 and is neither if
a>08& b*-4ac>0or a<0& b’-4ac>0

Example- Determine whether each of the following function pesitive definite, negative
definite or neither:

A- X2 -xy-y? B- 2x* -3xy+3y? C--2x*+3xy-y? D- —x’—4xy-5y’
Solution A- Here E(x, y) = x> — xy — y*comparinga=1>0 & b* —4ac =5> 0so it is neither.

Answer B- Here E(x,y)=2x*-3xy+3y’comparinga=2>08&b’-4ac=-15<0, so it
positive definite.

Answer C- Here E(x,y) =-2x* +3xy—y?on comparing=-2<0&b*-4ac=1>0, so it is
neither.

Answer D- Here E(x,y) = —x* —4xy -5y“on comparing=-1<0 &b* —4ac=-4<0, so it is
negative definite.

Example — Show that(0, 0) is an asymptotically stable critical point for eawhthe following
systems:

%=‘3X3—y %=—2x+xy3
A- gt B- St

Yy _ s 3 Y _ 2,23

— =X -2 — ==Xy -

it Y a0 Y
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dx

—=-3-y
Solution- Let ;lt (1)
Y _ o5 3
— =X -2
dt y

On  comparing F(xy)=-3x-y & G(x,y)=x>-2y°>, Now we  consider
E(x,y) =ax*™ +by*"where a,b,m&nare to be determined. The critical poi, O) will be

stable, ifd—E = %E F +a—EG, is negative semi definite i.e

dt  ox

c(ij_ItE = 2amx”™ (=3x® — y) + 2bny* (x° - 2y®)

(:j_ltE = —Gamx*™? — 2amx*™y + 2bnx°y*" ™ — 4bny®™? will be negative semi definite if

—2amx*™ 'y + 2bnx°y*"* =0 i.e 2amx*™y = 2bnx°y*"
equating the powers of & yand also the coefficients of xy on both sides, aeeh

2m-1=5=>m=3& 2n-1=1=n=land6a=2b—=a=1&b=3
So E(x,y) = x® +3y°.

Similarly 2" part can be solved

Answer 2- E(x,y) = x> +y?

Example- Show that (0, 0) is an unstable critical point for the system

dx

— =2xy+x°
a7

dy 2 5
dt y

Solution- Let us assume contradictory ttf@t0) is a stable critical point so

C:j—ltz = 4amx*™y + 2amx*™? - 2bnx >y > + 2bny*™** will be negative semi definite if

4amx’™y = 2bnx’y*" ™ = m=n=1& a=1&b=2, for these values af,n,a& b, the value of
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d_ItE >0Hence the critical point origin is unstable.

Green Function- Let us consider an nth order linear homogeneatferential equation
L(y)=0 1)
where L is a differential operator given by

dn dn—l
L(y)= pO(X)W.‘- pl(x)ﬁ-i- +p,(X) (2)
where p,(x), p,(X), p,(X)are continuous functions or{a, b]and the boundary

conditions are

V(y)=0, Ok=12 n 3)

WhereV, (y) =a,y@+aly @ +aly @+ +a ™ y"™ @)+ L.y(b)+ By (b)

+B2y (b)+ + By (b) ) (4
Where the linear forms Vi, V.. \'A in
y(a),y (a)..... vy (a),yb), y (0)....... y" ™ (b) are linearly independent.

Suppose the homogeneous boundary value problem bivél) to (4) has only a trivial solution
y(x) =0. The Green function of the boundary value prob{@jto (4) is the functionG(x,t)

constructed for any point t in<t <b and has the following properties

1- In each of the intervdla, t)& (t, b]the functionG(x,t)is considered as a function of x
and is a solution of (1) i.&(G) =0. (5)
2- G(x,t)is continuous and has continuous partial derivativih respect to x up tth—2)

orders ona< x<b.
3- The (n-1) th derivative of G(x,t) with respect to x ak =t has a discontinuity of Ist kind

and the jump being equal (& 1 ji.e
P, (t)

5] 5L o)
aXn_l X=t+0 axn—l x=t-0 po(t)

G(x,t) satisfies the boundary conditiong (G) =0, k=12.. n.

4

Note- If the boundary value problem1{ to (4) has only a trivial solutiony(x) =0, then the
operator L has a unique Green functi@x,t) .
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Example- Find the Green function of the following boundaatue problems

1- y'=0,  y(@0)=y()=0 2.y +u’y=0, yO=y@®=0

N xy"+y"(%jy:0’ y(O)is finite & y()=0

Solution - Let y =0 y(0) =y()=0

First, we show that (1) has a zero or trivial Solut

For this integrating (1) twice with respect toxen the solution of (1) is
y=ax+b

Using the boundary conditiong(0) =0=b=0and y(l) =0=0=al =a=0
Hence y(x) =0is a zero or trivial solution of (1). So (1) ha&eeen function

+ O<x<t
Gxt) =i "% X
bx+b, t<x<l
Now G(x,t) satisfies the following properties
(1) G(x,t)is continuous ak=tsobt+b, =at+a, = (b —a)t =(a, —b,)

(2) G(x,t) has a discontinuity of magnitudg% e
0

0G 0G
—| -|=| =-1=>b-a=-1
( aX jx:HO ( aX jx:t—o - bl al

(3) G(x,t) satisfies the boundary conditio@q0,t) =0=4a,0+a,=0=a, =

G(,t)=0=hl +b, =0
From (3) & (4)a, —b, =t
Solving (3), (4), (5), (6) & (7) we have, =t, b, = _|£’ a, :1—|E

x(l 1)

O<x<t
ThereforeG(x,t) = !
t(l —x)
R — t<x<l
I
Answer 2- Solutiona, =0, b, :M, a, = —w &b, = —w
Y7 usinu Msinu
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_sinu(t—Dsinux

sin O<x<t
sxy=t O
_sm,utsm,u(t ) t<x<l
Usin
Answer 3Let xy +Vy —§y=0 y(0) = finite y(@) =0 (1)
Solution- (1) can be written ag’y +xy -y =0 y(0) = finite=k(say) y() =0 (2)
. o d _d _ , d? .
Puttingx=€" & x—=-—=D, x*—=D(D-1)in (2), we have
dx du dx
(D*-1)y=0 3)

The solution of (3) is

b
y=ax+—
X

) o
7] o

Sturm’s Comparison theorem: Let us consider two system ofrder differential equations
(p.u) +qu=0 @ & (p,(Mu)+q,@)u=0 (2 and assume that

G(x, t) =

1- p, (), p,(t), q(t) & g,(t)are continuous on thh, b].

2- uy(t) & u,(t) are the non trivial solutions of the given systenequations.
3- equation (2) is a sturm majorant of (1) Eanb]
4- the inequality b.(2)u,(3) > P (3)u;(2) holds, and the LHS & RHS become infinite
u, (a) u,(a)
whenu,(a) =0& u,(a) =0.
5- u,(t) hasexactlyn=1zeros att =t,,t,......... t.wheret, <t, <.......... <t,of (a, b].

Then the solutiom, (t) has at least n-zero (Hil tn] :

Proof: Let us define a pair of continuous functions géty & @, (t by )
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g u, (t)
Al =ten (pl(t)u;(t)j M)

e U (1)
a0 = (pza)u;(t)] 2

on the[a,b] for Osg <m UOi=1 2(only principle values).

1 1 1 1
< = — < ,
p.(t) P (1) p(ut) p,(Hu,(t)
u,(a) < u,(a)

Since p,(t) 2 p,(t)=

so for a particular value dt=a,

we have —— < , henceO<g@g(a)<@(a)<rm
P (U@ p,(a)u;(a) A=
Also by prufer’s transformation
A =——cos’ @ +q, 0)sin’g 3)
p.(t)
Gt =—cos’ +0, ()sin’ (4)
P (1)

Putting f, (t, ¢) =%co§¢; +q t)sin’ @, 0i=212 usingin (3) & (4), we have
Pi

an=1t9 & p,O=rLtP=>9=ftg9 Di=12 )

The solution of (3) isg(t) with condition (a, g(a))and the solution of (4) isp(t) with
condition(a, ¢ (a)).
1
<
p(t)  p()

Since p,(t) = p,(t) = 0t D[a, b] so by (5), we have

{g =1t P} <{d =1, P}on integrating, we haveg(t)<g@(t) OtO[a bjso putting
t=t,we haveq(t,) <@ (t,) = n<@(t,)sinceq f has exactly n zeros da, b]. This implies
u, (t) has at least n zeros oﬁa, tn] (wheret, =Db).

Corollary: The zeros of two linearly independent solutionsi(t) & u,(t)of

(pl(t)u')' +q,(t)u = Ointerlace, i.e between any two consecutive zeramefsolution there lies a
zero of the other solution.
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Proof: Letu,(t) & u,(t)be any two solutions tébl(t)u')' +q,(t)u=0 (1) then
both u, (t) & u,(t)satisfy (1) so

(P U, ®) +a O, =0 2)
(P01 ®) + a0 =0 ©)
Let t, & t,be any two consecutive zerosgft go)u,(t;) =0=u,(t,).

Subtracting on multiplying (2) by, and (3) byu,and then integrating between the limitdo t,
, we have

b, ()fu; (O, (1) - uy (U, ] 2= 0

Or

[P (U t)u, (6) = U, (6 )u )] = [P @) U, () - v, (L )u )} = 0
putting u,(t,) =0 =u,(t,) , so it become

Pa(t)Uy (t2)U, (8;) = Pat)uy (t)u, () -

Since u,(t,) & u,(t,) are of opposite signs so,(t,) & u,(t, wil be of opposite signs. Hence
u,(t) has at least one zero betweek t,.
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