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“In the beginning, God said, ‘Let the four-dimensional divergence of an
antisymmetric second rank tensor be equal to zero.’ And there was light”.
–Michio Kaku (about what a UC Berkeley T-shirt picture says)

—————————————————

The following is an abridged, incomplete and impromptu version an
introductory part of my lectures recently delivered to a set of MSc second
semester students at the Department of Physics, University of Lucknow. Any
feedback is welcome at my email.

An advice on how to read this article, e-resources or the text books
referred to at the end: Never feel disheartened if you don’t understand the
text very well to begin with. Don’t go line by line. To all of us, understand-
ing comes in steps, and never at one go. So skip over a few hard things,
and come back to them later. This may be repeated a few times. As you go
deeper and deeper, mainly by solving problems given here (marked with the
symbol ⊕), or during my lectures or elsewhere, various connections are made,
and it starts making sense. Then, you can enjoy it all along. So, Bon Voyage!

—————————————————-

0.1 Building up on the Lorentz Transforma-

tions

Please recall that the Poincaré group is a ten parameter group which in-
cludes three boosts (spacetime rotations), three space rotations SO(3), and
four translations. Among them, the “orthochronous” and “anti-chronous”
elements are those with the time-time components squared greater than or
equal to zero.

The set of four quantities defined in four-dimensional spacetime, that
change as the infinitesimal differentials of coordinates 1 of an event do un-
der the Lorentz Transformations (including the boosts), is termed as a four-
vector.

1If you use Cartesian coordinates, then xi, and not just dxi, also change as four-vectors.
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You know that the transformed Cartesian coordinates are given as, 2

x′i = Λi
jx
j, (1)

that is, x′0 = (x0 − βx1)γ; x′1 = (x1 − βx0)γ; x′2 = x2; x′3 = x3 in a
special case for S −→ S ′ (inertial frames moving along X−axis).

By the same token, you may think of a contravariant four-vector as

A′i = Λi
jA

j, (2)

with A′0 = (A0 − βA1)γ; A′1 = (A1 − βA0)γ; A′2 = A2; A′3 = A3 for
the transformation S −→ S ′.

P (x0, x1, x2, x3); (A0, A1, A2, A3) −→ (x′0, x′1, x′2, x′3); (A′0, A′1, A′2, A′3) for
the same event (spacetime point) P .

Thus, the statement (x0)2 − (x1)2 − (x2)2 − (x3)2 = (x′0)2 − (x′1)2 −
(x′2)2 − (x′3)2 would imply for the four-vector components that, (A0)2 −
(A1)2 − (A2)2 − (A3)2 = (A′0)2 − (A′1)2 − (A′2)2 − (A′3)2 which holds good
for the relative motion of the frames along an arbitrary direction.

0.2 Is it a flat spacetime or curved space-

time?

How would you check whether a given spacetime is flat or curved? We know
that the square of the four-interval between two infinitesimally close events
is given by ds2 = gikdx

idxk. If you are able to write gik like (+1,−1,−1,−1)
(in Cartesian coordinates; while in other coordinate systems these compo-
nents would not be all constants), that is, as a diagonalized matrix made
up of all constant terms by any number of attempts (i.e., by any coordinate
transformations whatsoever), then it is a flat spacetime. And if you find it

2

(i) As a special case, you may write (1) as rotations in x1−x0 plane, where tanhα = v
c

using rapidity. It is something like 3− space rotations where Λij ≡ (Λ) ≡ ∂x′i

∂xj .
⊕ Express the later in terms of angle θ to write the transformation matrix R.

(ii) Maths tells us that Ai behaves as the components of a tangent vector Ai ≡ dxi

dλ to
a curve parametrized by λ, as shown in my lectures. ⊕ Is it a coincidence?
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impossible to do so, then it must be a curved spacetime. In this case, gik can
never be written in the Euclidean form at all spacetime points. It is a very
important property of gravitation⇒ to curve spacetime (not just space, not
just time but both together!).
The good thing is that we don’t have to worry about all this difference at
the present level of this Course (which sticks only to special relativity 3 or
flat spacetime), while the bad news is the classical electrodynamics is not
complete unless you take into account the field of gravity lurking in the
background. So, the things, as we are doing here and now, are not entirely
correct. This rather subtle but elegant issue can be discussed elsewhere in
detail.

0.3 Four-vectors

The four-interval between any two infinitesimally close events is given by

ds = (c2dt2 − dx2 − dy2 − dz2)1/2. (3)

So, the square of the length of vector (four-radius vector) is (x0)2−(x1)2−
(x2)2 − (x3)2, where x0 = ct; x1 = x; x2 = y; x3 = z.

This four-dimensional geometry is essentially the Pseudo-Euclidean or
Minkowski spacetime geometry introduced by Hermann Minkowski (with
strange properties such as

∫
ds stays maximum along the straight world line,

compared to others describing uniform motion or even acceleration: yes,
special relativity can deal with accelerated motions as well). The purpose
of introducing four-tensors is to know what changes (and how) and what
does not, when the Lorentzian spacetime transformations take place. Such
quantities, obviously, are then attached with the ‘geometry’ of that spacetime
and not just with the coordinate effects.

Signature of spacetime ⇒ (+,−,−,−) = number of (+) coefficients
− number of (−) coefficients = −2.

Basic Definitions :

3There exist several approaches; for example see the most recent reference at the time of
this writing: W. N. Mathews, Seven Formulations of the Kinematics of Special Relativity,
American Journal of Physics 88(4), 269-278, April 2020.
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Four-scalar : A quantity that doesn’t change under the transformation
of coordinates.4.

φ(xi) = φ[xi(x′k)] = φ′(x′k). (4)

The form of function may change but the value remains invariant.

—————————————————–
⊕ Could you verify if the following quantities are four-scalars: coordinate

time, relativistic and rest mass, frequency, energy of light and its speed in
vacuum or any other medium?

——————————————————
Four-vector : Any four components that transform like xi under the

coordinate transformation (see the footnote 1).
Contravariant four-vector : Suppose a curve is parameterized by λ,

then the coordinates on this curve are xi = xi(λ) and direction to the tangent
at any point is given by a vector with 4- components 5

Ai ≡ dxi

dλ
. (5)

Direction of tangent is an invariant concept, though the components of Ai

change under coordinate transformation as A′i ≡ dx′i

dλ
. Clearly,

A′i ≡ dx′i

dxk
dxk

dλ
=
dx′i

dxk
Ak (6)

as x′i = Λi
kx

k, A′i = Λi
kA

k follows as a linear transformation

A′i =
dx′i

dxk
Ak. (7)

Any vector as above is a contravariant four-vector.
Covariant four-vector : Consider a 3-dimensional hypersurface de-

scribed by the equation φ(xk) = constant. The normal has the direction

4Of course, in special relativity, and therefore for the purpose of the present lectures,
we consider only the transformations spanned by the Lorentz group, and not the arbitrary
ones, which are left to general relativity.

5In physics, we can choose this parameter as proper time τ or line element to define
quantities like four-velocity and four-momentum.
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fixed by four components given by Bi = dφ
dxi

. Under the coordinate transfor-

mation, its direction remains fixed but the components change as B′i = dφ
dx′i

.
Thus

B′i =
dφ

dx′i
=
dxk

dx′i
dφ

dxk
=
dxk

dx′i
Bk. (8)

Hence, the linear transformation is followed.

B′i =
dxk

dx′i
Bk (9)

The quantities which change as above under transformation of the coordi-
nates form a covariant four-vector. They are defined in dual space.

• Examples:

(i) A curve parameterized by x0 =constant, x1 =constant, x2 = λ, x3 = λ2

has tangent specified by contravariant vector components. Therefore,
A0 = 0, A1 = 0, A2 = 1, A3 = 2λ.

(ii) A unit sphere

φ = (x1)2 + (x2)2 + (x3)2 = 1 (10)

has the normal specified by covariant vector components B′i = dφ
dx′i

.
Thus, B0 = 0, B1 = 2x1, B2 = 2x2, B3 = 2x3.

————————————————–
⊕ Should the dimensions of all components of a four-vector be the same?
—————————————————
Definition: Scalar Product or Inner Product:

AiB
i = AiBi = A0B0 + A1B1 + A2B2 + A3B3 (11)

remains invariant. Similarly, AiA
i or gikA

iAk remain invariant for any four-
vector Ai = (A0,A) just as does the length of a radius vector xi = (ct, r).

Conventions followed:

(i) Einstein’s convention of summation over dummy indices

AiA
i =

∑
AiA

i (12)

holding for the same upper and lower indices only.
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(ii) Latin indices for 0, 1, 2, 3, ... (i, k, l, ...) and Greek indices for 1, 2, 3...
(λ, µ, ν, ...).

(iii) Signature of metric (+,−,−,−), ds2 = c2dt2 − dx2 − dy2 − dz2.

The square of the magnitude (or norm) of Ai is given by

AiAi = A0A0 + A1A1 + A2A2 + A3A3 = (A0)2 − (A1)2 − (A2)2 − (A3)2. (13)

It is a Lorentz scalar quantity being a tensor of zero rank, and so remains
invariant under the transformations contained in the Lorentz group.

Nature of four-vector The squared length of a three vector is always
positive. However, it is not so for four-vectors. The following criteria (with
our chosen signature) apply:

(i) Timelike :(A0)2 > (A1)2 + (A2)2 + (A3)2, positive square of length.

(ii) Spacelike : Negative square length.

(iii) Lightlike or Null: Zero length.

We also call the surfaces as timelike, spacelike or lightlike when a co-
variant four-vector Bi (say, the normal at an event xk) orthogonal to it is
spacelike, timelike or lightlike, respectively.

—————————————————
⊕ Show that if you add or subtract two four-vectors, the resultant vector

can have any of the above stated types (timelike, spacelike or null) indepen-
dent of the nature of those two four-vectors.
⊕ Show that a lightlike four-vector is orthogonal to itself.
—————————————————

0.4 Four-tensors:

Generalization of a four-vector with the following transformation rules –
Contravariant tensor of rank 2:

T ′ik =
∂x′i

∂xm
∂x′k

∂xn
Tmn. (14)
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Covariant tensor of rank 2:

T ′ik =
∂xm

∂x′i
∂xn

∂x′k
Tmn (15)

Mixed tensor of rank 2:

T ′ik =
∂x′i

∂xm
∂xn

∂x′k
Tmn. (16)

(Don’t put index k below i, or n below m unless the original tensor with the
similar indices is symmetric as defined below). They transform like product
of two four-vectors. Higher rank tensors are likewise constructed by product
of as many four-vectors.

Raising or Lowering of Indices : Under our convention, if this op-
eration is done for time index, no change occurs in sign. However, for each
space index (1, 2, 3), sign changes on every operation. This result arises from
the fact that we have chosen the spacetime signature as (+,−,−,−), i.e.,
−2. If we choose (−,+,+,+), the above conclusion would be reverse.

Symmetric Tensor: If Aik = Aki then Aik is a symmetric tensor.
As an example, consider A32 = A23. Also see that A32 = −A3

2 and
A23 = −A2

3. Then A3
2 = A2

3.
Thus, we can justifiably write for a symmetric tensor Aik :

Aik = Aki. (17)

——————————————————
⊕ Can you claim that the form given by equation (17) is symmetric? 6

——————————————————
Note : • The above second rank symmetric tensor has N2−N

2
+ N =

N(N+1)
2

independent components in N -dimensional spacetime.
• Since for a symmetric tensor Aik, you have A3

2 = A2
3, you may write

it as A3
2. More generally, for a symmetric tensor, Aik = Ak

i = Aik.
Antisymmetric (or skewsymmetric) Tensor :

(1) If Aik = −Aki. Now, for A01 = −A0
1 & A10 = −A1

0 and hence
A01 = −A10. Therefore, A0

1 = −A1
0. An antisymmetric tensor is

6Hint: The equality Aik = Aki for an arbitrary tensor may hold in one frame, while
it may not in another frame under the Lorentz group of transformations. Check it.
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also called a bivector. If Aik = aibk − akbi then it is a ‘simple’ or
‘decomposable’ bivector.

Caution: If Aik is symmetric or antisymmetric ( remembering the fact
that an arbitrary tensor may be neither symmetric nor antisymmetric)it
will remain so under Lorentz transformations.

Thus, for an antisymmetric tensor,

Aik = −Aki 6= Aki . (18)

Antisymmetric tensor of rank two has N(N−1)
2

independent components.

(2) A00 = −A00, A11 = −A11, A22 = −A22, A33 = −A33 for antisym-
metric tensor so A00 = A11 = A22 = A33 = 0.

—————————————————–
⊕ Show that the trace of an antisymmetric tensor is zero.
—————————————————-

0.5 More Problems:

⊕ 1. Show that every four-vector orthogonal to a lightlike four-vector must
be spacelike (or lightlike, in trivial case). Further, show that the prop-
agation vector of light ki is lightlike and hence, orthogonal to itself.
(By the way, this is the origin of the word ”lightlike”.)

⊕ 2. Construct two orthogonal four-vectors by doing some simple algebraic
operation (addition, subtraction or multiplication) between any two
vectors of equal norm.

⊕3. A tachyonic particle flies off at time t1 with speed v > c and returns at
time t2 to the same point. Sketch its world line on light cone diagram.
Is the time ordering absolute?

⊕4. Show that Λ0
0 cannot lie between +1 &−1. Construct the orthochronous

Lorentz group from the elements Λ↑+, Λ↓−, Λ↓+, Λ↑−. Under which
of these transformations are the laws of physics invariant in special
relativity?
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—————————————————
• The resources mentioned ahead are by no means the substitute of, but

are in addition to, my classroom lectures which are based on the current
syllabus of PHYC- 203 course of MSc (Physics) second semester at the Uni-
versity of Lucknow. E-text version of some of these resources is also available
on the web.

—————————————————
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