

PHOTOCHEMICAL SMOG

Smog, community-wide polluted <u>air</u>. Its composition is variable. The term is derived from the words *smoke* and *fog*, but it is commonly used to describe the pall of automotive or industrial origin that lies over many cities. The term was probably first used in 1905 by H.A. Des Voeux to describe atmospheric conditions over many British towns. It was popularized in 1911 by Des Voeux's report to the ManchesterConference of the Smoke Abatement League of Great Britainon the more than 1,000 "smoke-fog" deaths that occurred in Glasgow and Edinburgh during the autumn of 1909.

At least two distinct types of smog are recognized: sulfurous smog and photochemical smog. Sulfurous smog, which is also called "London smog," results from a high concentration of sulfur oxides in the air and is caused by the use of sulfur-bearing fossil fuels, particularly coal. This type of smog is aggravated by dampness and a high concentration of suspended particulate matter in the air.

Photochemical smog, which is also known as "Los Angeles smog," occurs most prominently in urban areas that have large numbers of automobiles. It requires neither smoke nor fog. This type of smog has its origin in the nitrogenoxides and hydrocarbon vapours emitted by automobiles and other sources, which then undergo photochemical reactions in the lower atmosphere. The highly toxic gas ozone arises from the reaction of nitrogen oxides with hydrocarbon vapours in the presence of sunlight, and some nitrogen dioxide is produced from the reaction of nitrogen oxide with sunlight. The resulting smog causes a light brownish coloration of the atmosphere, reduced visibility, plant damage, irritation of the eyes, and respiratory distress. Surface-level ozone concentrations are considered unhealthy if they exceed 70 parts per billion for eight hours or longer; such conditions are fairly common in urban areas prone to photochemical smog.

Formation of Photochemical Smog

Step 1: People begin driving in the morning, nitrogen is burned or oxidized

N2+O2 2NO(1)(1)N2+O2 \rightarrow 2NO

Oxidation number of N_2 is 0. The nitrogen in NO has acquired an oxidation number of +2. Step 2: After a few hours, NO combines with O_2 , in another oxidation reaction

2NO+O₂ 2NO₂(2)(2)2NO+O₂ \rightarrow 2NO₂

The nitrogen in NO has an oxidation number of +2. The nitrogen in NO_2 has an oxidation number of +4. Step 3: Nitrogen dioxide absorbs light energy, resulting in a reduction reaction

NO₂ NO+O(3)(3)NO2→NO+O

The nitrogen in NO_2 has an oxidation number of +4 and the nitrogen in NO is +2. Step 4: In sunlight, atomic oxygen combines with oxygen gas to form ozone

O+O2 O3(4)(4)O+O2→O3

Step 5: Reaction is temperature and sunlight dependent

O3+NO NO2+O2(5)(5)O3+NO NO2+O2

Sulfurous smog

Sulfurous smog is also called "London smog," (first formed in London). Sulfurous smog results from a high concentration of SULFUR OXIDES in the air and is caused by the use of sulfur-bearing fossil fuels, particularly coal (Coal was the mains source of power in London during nineteenth century. The effects of coal burning were observed in early twentieth century). This type of smog is aggravated by dampness and a high concentration of suspended particulate matter in the air.

Photochemical smog

Photochemical smog is also known as "Los Angeles smog". Photochemical smog occurs most prominently in urban areas that have large numbers of automobiles (Nitrogen oxidesare the primary emissions). Photochemical (summer smog) forms when pollutants such as nitrogen oxides (primary pollutant) and organic compounds (primary pollutants) react together in the presence of SUNLIGHT. A gas called OZONE (Secondary pollutant) is formed.

Nitrogen Dioxide + Sunlight + Hydrocarbons = Ozone (Ozone in stratosphere it is beneficial, but near the earth's surface it results in global warming as it is a greenhouse gas)

The resulting smog causes a light brownish coloration of the atmosphere, reduced visibility, plant damage, irritation of the eyes, and respiratory distress.

Characteristic	Los Angelas (Photochemical smog)	London (Classic smog)
Air temperature	24 to 32°C	-1 to 4°C
Relative hum dity	< 70%	85% (+fog)
Visibility	< 0.8 to 1.6 km	< 30 m
Months of most frequent occurrence	August September	December January
Time of max, occurrence	Mid-day	Early morning
Majo: fuels	Oil	Coal and oil products
Principle components	0 ₃ , NOx, CO, VOC	Particles (incl. soot), CO, S- compounds
Chemical condition	Oxidative	Reductive, acidic
Principal health effects	Lung function, cough, shortness of breath O ₂) Temporary eye irritation (PAN Peroxyacetylnitrate)	Bronchial initation, coughing (particles/SO ₂)
Effects on materials	Rubber cracked (O ₃)	Corrosion of many materials (iron, zinc, sandstone)
Effects on plants	Ozone damage mony plants	SO ₂ , particles and acid fog damage many plants

Comparison of Los Angeles and London smog