
1

 TREE

A graph is said to be tree if it is acyclic.

 Spanning tree

 A spanning tree T contains all vertices of the graph and has no closed paths.

Example:

 a b a b a a

 c d c d f c d

 f

 e e e f

 (i) connected graph G (ii)spanning tree T1 (iii)spanning tree T2

 Figure - Graph and spanning trees

 Minimum Spanning tree

 A spanning tree with least sum of weights among all the spanning trees of a weighted

graph is called the minimum spanning tree. A minimum spanning tree is not unique,

Kruskal's algorithm

 Let T be the empty spanning tree.

(1) Arrange the set of edges E of the graph in the increasing order of the weights.

(2) Delete the first edge in the set E and add it to the tree T if and only if no

closed path is formed in the tree.

(3) Repeat from step 2, if E is not empty. Otherwise stop.

 T is the required minimum spanning tree.

Prim's algorithm

 Start from any vertex. Build the minimum spanning tree by deleting edges from the

edge set E and adding them to the tree T.

(1) Select an arbitrary vertex v ∈ V and add it to V’.

2

(2) Select an edge (x, y) from E with minimum weight such that one of its end

vertices is in V’ and other in V – V’. Add this edge to the tree T only if it

doesn’t cause to create a closed path in T. If more than one edge satisfy this

condition then select any of these edges arbitrarily. Also add vertices u and v

to V’ if already not there.

(3) Repeat from step 2, if V’ ≠ V. Otherwise stop.

 T is the required minimum spanning tree.

Theorem

 The sum of the degrees of all the vertices in a graph is equal to twice the number of edges.

Proof

 Let us prove this theorem by induction. Consider a graph G = (V, E).

(1) Let G contains no edge,
 i.e. number of edges = 0,

 ⇒ sum of the degrees of all the vertices = 0,

 = 2 x 0,

 ⇒ theorem is true.

(2) Let G contains one edge. Then there may be either two vertices in G which are the

two ends of the edge or the edge may be a loop on one vertex. In both the cases

sum of the degrees will be 2.

 i.e. number of edges = 1,

 ⇒ sum of the degrees of all the vertices = 2,

 = 2 x 1,

 ⇒ theorem is true.

(3) Let the theorem is true for an arbitrary graph with number of edges = e,

 i.e. sum of the degrees of all the vertices = 2e.

 Now add one edge in the graph, then total number of edges = e + 1.

 Note that addition of an edge will increase the total degree of the graph by 2

 Therefore, the sum of the degrees of all vertices = 2e +2,

 = 2 x (e +1),

3

 = 2 x number of edges.

 Hence theorem is true.

 Theorem

 In a graph G, the number of vertices of odd degree is even.

Proof

 Consider a graph G = (V, E) such that it contains some vertices of odd and some of even

degree. Partition the set of vertices into two categories,

(i) Vertices of odd degree and

(ii) Vertices of even degree.

Then total degree of the graph = sum of degrees of odd degree vertices + sum of degrees of

even degree vertices.

Further,

 (a) the total degree of the graph is even = 2m, say.

 and (b) the sum of the degrees of even degree vertices will be even, naturally = 2n, say.

Therefore,

 2m = sum of degrees of odd degree vertices + 2n,

 ⇒ sum of degrees of odd degree vertices = 2m – 2n,

 = 2(m – n),

 = even.

⇒ Number of vertices of odd degree will be even; because only the sum of even

number of odds can be even.

 Hence theorem is proved.

Theorem

 The total number of edges in a complete graph with n vertices is n(n – 1)/2.

Proof: Consider a complete graph Kn.

 In a complete graph with n vertices, each vertex is connected with other n – 1 vertices.

Therefore degree of each vertex = n – 1,

 ⇒ total degree = n(n – 1)

 ⇒ 2 × number of edges in the graph = n(n – 1)

4

 Hence, total number of edges in the graph = n(n – 1)/2.

Theorem

Every cut set in a connected graph G contains at least one edge of every spanning tree of G.

Proof

 Consider a graph G and let S be a cut set of it. Also let T be a spanning tree of it.

 A spanning tree contains all the vertices of the graph which are connected by the edges.

There is no loop or closed path in the tree, and therefore, all the edges are essential to keep

the tree a connected graph. Clearly to disconnect the tree, at least one edge has to be

deleted. Therefore every cut set in a connected graph G contains at least one edge of every

spanning tree of G.

Dijkstra’s shortest path algorithm

 Consider a connected graph G = (V, E). Let a and z be two vertices. The aim is to

find the shortest path between a and z.

 Partition the set V of vertices into two sets, P and T, such that P contains a and T = V – P.

(1) Initially P ∶= {a}; mark vertex a visited by enclosing it in a circle.

 T ∶= V – {a},

 For every vertex r in T let i(r) ∶= w(a, r),

 where w(a, r) ∶= ∞, if a and r are not adjacent,

 ∶= weight of the edge (a, r), otherwise.

 Call i(r), the index of vertex r.

 Also attach path, the sequence of vertices with i(r) whose weight is w(a, r)

if w(a, r) ≠ ∞. Leave blank, otherwise. Blank is shown by a dash symbol(−).

(2) Select a vertex x in T that has the minimum index; mark x visited by enclosing it in a

circle.

 If x = z, stop and exit; shortest path is the

 sequence of vertices attached with i(x) and distance is i(x);

 otherwise, move to step 3.

(3) P’ ∶= P ∪ {x},

T’ ∶= T – {x},

for every vertex y adjacent to x in T’, modify its index by the formula

 i(y) ∶= min{ i(y), i(x) + w(x, y)}.

5

 Also p ∶= p’,

 T ∶= T’.

Modify the path (or sequence of vertices) attached with each vertex in T according

to the new index i(y); i.e. the sequence of the vertices which gives the value i(y).

(4) Go to step 2.

Paths between vertices

 Adjacency matrix of a graph can be used to find the paths between each pair of vertices.

Let A be the adjacency matrix. Find the powers of A; i.e. A2, A3, …An
 etc. Denote an

element of adjacency matrix Ak
 by ak(i, j) . Then ak(i, j) gives the number of paths of length k

from vertex vi to vertex vj.

 Also let Br = A + A2 + A3 … + Ar
. then bij, element in ith row and j

th column gives

the number of paths of length r or less from vertex vi to vertex vj.

Path matrix

 Let G be a graph with n vertices. Then a square matrix P of order n×n is called the path

matrix of the graph G, such that the element

 pij = 1 , if there is a path from vertex vi to vj,

 = 0, otherwise.

Let A be the adjacency matrix of the graph G with n vertices. Compute A2 , A3 , … , An.

Also find Bn = A + A2 + A3 … + An
. Form a matrix P by replacing the non zero

elements of matrix Bn by 1. This P will be the path matrix of the graph G. If all the elements

in the path matrix of a graph are 1, then it is called strongly connected.

Warshall's algorithm

 A path matrix is also called transitive closure of the graph. Here, the algorithm is written

in pseudo Pascal code. Consider a directed graph G =(V, E) and let M be its adjacency

matrix. Matrix M is Boolean consisting of elements 0 or 1. Path matrix P is computed by

execution of this algorithm.

6

 begin

 for i ∶= 1 to n do

 M[i, i] ∶= 1;

 for i ∶= 1 to n do

 (

 for j ∶= 1 to n do

 (

 if M[j, i] = 1 then

 for k ∶= 1 to n do

 M[j, i] ∶= M[j, i] ⋁ M[i, k];

)

)

 for i ∶= 1 to n do

 (

 for j ∶= 1 to n do

 P[j, i] ∶= M[j, i];

)

 end;

Example

 b d

 a

 c e

 Graph G

7

 a b c d e

 a 0 1 0 0 0

 b 0 0 1 1 0

 c 1 0 0 0 0

 d 0 0 0 0 1

 e 0 0 1 0 0

 Adjacency matrix

 a b c d e

 a 1 1 1 1 1

 b 1 1 1 1 1

 P = c 1 1 1 1 1

 d 1 1 1 1 1

 e 1 1 1 1 1

 Path matrix

When algorithm is executed completely, the path matrix P is obtained. Since all the elements

of P are 1 therefore matrix P is strongly connected.

Tree traversal

 A binary tree can only be accessed by its root; i.e. the beginning of the traversal is

only possible from its root. Addresses of other vertices in the tree are stored in their

preceding vertices.

Preorder tree traversal

 Consider a binary tree T with root R.

(1) Process the root R.

(2) Traverse the left sub tree of R in preorder.

(3) Traverse the right sub tree of R in preorder.

8

 Process means performing some operation like reading the data. The algorithm is

also read as root-left-right

Inorder tree traversal

(4) Traverse the left sub tree of R in inorder.

(5) Process the root R.

(6) Traverse the right sub tree of R in inorder.

 It is also read as left-root-right.

 Postorder tree traversal

(1) Traverse the left sub tree of R in postorder.

(2) Traverse the right sub tree of R in postorder.

(3) Process the root R.

 It is read as left-right-root.

 Notice that all the three algorithms are similar, except the change in the order of
execution of the three statements.

Expression trees

 An arithmetic expression can be computed using an expression tree. It is a binary tree

that stores numeric data in the leaves of the tree. Operators of the expression are stored in

the interior nodes of the tree. Computation is performed in three ways: prefix, infix and

postfix that resemble the three traversal procedures given above. For instance, consider

expression x = 2 + 3 ∗ 4 − 7. This expression may be evaluated ambiguously resulting in

different values if we do not have operator precedence in mind; i.e. it may be (2 + 3) ∗ 4 − 7

or 2 + (3 ∗ 4) − 7 etc. Therefore, expression may be parenthesized to remove the ambiguity.

A fully parenthesized expression, like ((2 + 3) ∗ 4) − 7 has no ambiguity and results in one

value.

 If an expression is fully parenthesized its expression tree will be unique. Construction of

an expression tree is easy if the expression is given in infix form.

 Let the expression be ((2 + 5) ∗ 4) – ((8 + 3)∗(4 – 7)). This is fully parenthesized and

hence is unambiguous. This can be divided into two sub expressions which are on the left

and right of the operator ‘− ‘ .

1. ((2 + 5) ∗ 4) and

2. ((8 + 3)∗(4 – 7))

 Operator ‘−‘ will form the root of the tree. The first expression will constitute the left sub

tree and the second right sub tree.

9

 Postfix notation is also called reverse polish notation (RPN) and it is used in some

calculators for arithmetic computation. RPN can easily be computed by using a data

structure stack. Stack is a data structure in which elements are added and deleted from

only one end called top of the stack. The data added last is deleted first. Hence, it is called

last in first out (LIFO) structure.

Cut point

A vertex in a graph G is called a cut point if its deletion makes the graph disconnected.

 a b cut points g

 d e

 C f

 Figure –Cut points

−

∗ ∗

+ 4

2 5

+ −

8 3 4
7

10

 Bridge

 An edge of a graph is called a bridge if its deletion makes the graph disconnected.

 a c bridges g

 d e

 b f

 Bridges

 Edge-cutset

An edge-cutset of a graph is the collection of edges whose removal makes the graph

disconnected.

 b e

 a c f h

 d g

 Edge-cutset {(b, e), (c, f), (d, g)}

 Vertex-cutset

A vertex-cutset of a graph is the collection of vertices whose removal makes the graph

disconnected.

 b e

 a c f h

 d g

 Vertex-cutset {b, c, d}

11

Partition-cutset

Let G1 and G2 be two sets of vertices of graph G such that G1 and G2 form a partition of G.

Then the collection of all edges of G having one end point in G1 and the other end point in G2

is called a partition-cutset. Removal of partition-cutset from the graph makes the graph

disconnected.

Vertex-connectivity

The vertex-connectivity of a connected graph G is the minimum number of vertices whose

deletion can either disconnect G or reduce it to a single vertex graph. It is denoted as Kv.

 Vertex-connectivity

 b e

 a c f h

 d g

 Vertex-connectivity {e, g}

Edge-connectivity

The Edge-connectivity of a connected graph G is the minimum number of edges whose

deletion can disconnect G. It is denoted as Ke.

 b e

 a c f h

 d g

 Edge-connectivity Ke = 3 with edge-cutset {(b, e), (c, f), (d, g)}

12

Internally disjoint paths

Let G be a graph. Let a and b be any two of its vertices. Let us call a path of G a−b path

if a is initial vertex and b is final vertex of the path. A vertex v is called the internal

vertex of a−b path if it is neither the initial vertex nor the final vertex of the path. A set of

a−b paths in G is said to be internally disjoint if no two paths in the set have an

internal vertex in common.

 Internally disjoint paths

 b e

 a c f h

 d g

 Internally disjoint paths

 (viii) k-edge-connected graph

Let G be a graph. Then G is said to be k-edge-connected, if G is connected and Ke ≥k.

Menger’s theorem

 Let G be an undirected graph, and let a and b be two non-adjacent vertices in G.

Then, the maximum number of internally-disjoint a-b paths in G equals the minimum number

of vertices from V − {a, b} whose deletion separates a and b. Here, V is the set of all vertices

of G.

Flow-network

 A flow-network, G = (V, E) is a directed graph with V the set of vertices (or nodes),

and E the set of edges (or arcs) such that each edge e ∈ E has a capacity c(e) ≥ 0. In the

flow-network, if a node has only outgoing edges it is called source. In contrary, if a node has

only incoming edges, it is called sink. In graph, source node is designated with s, and sink

as t.

13

 b 3 c

 6

 source s 5 5 8

 4

 a 7 t sink

Flow-network

Feasible flow

A feasible flow in a flow-network is a function f: E ⟶ℝ; where E is the set of edges, and

ℝ, the set of non-negative real numbers. A feasible flow satisfies the following constraints.

(i) Capacity constraint: f(e)≤ c(e); where f(e) is the actual assigned flow value to an

edge, and c(e), the capacity of edge e.

(ii) Conservation constraint: for every vertex v, ∑ In(v) = ∑ Out(v); where, In(v) is the

incoming flow, and Out(v), outgoing flow of node v.

Each edge of the flow-network in a feasible flow has two labels: capacity and actual flow.

First digit shows the capacity of the edge while second, actual flow through it.

 b 3, 3 c

 4, 3

 source s 5, 3 6,1 8, 2

 6, 4

 a 7, 5 t sink

A feasible flow in a flow-network

Multiple Sources/Sinks

A flow-network may contain more than one source, and more than one sink nodes.

 source s2

 4 6
 a 3 b

 4 9 5

 source s1 5 6 8 t2 sink

 6

 c 7 t1 sink

Multiple Sources/Sinks

14

Cut sets in flow-networks

 Let F be a flow-network. Partition the set of vertices V into two sets Vs and Vt such that

source s ∈ Vs, and sink t ∈ Vt. Since, Vs and Vt form a partition of V, therefore, it is obvious

that Vs ∪ Vt = V, and Vs ∩ Vt = ∅.

 Set of all edges, which are directed from vertex set Vs to vertex set Vt is called an s-t cut

and is denoted as < Vs, Vt >. A minimum s-t cut is a cut with minimum capacity.

Relation between flows and cuts

There is a direct relationship between a flow and a cut. In fact, the value of any flow

equals the total flow across the edges of the cutset < { s }, V−{s} >. Here, V is the set of

vertices, and Vs = {s} and Vt = V – {s}. Let Val(f) denotes the net flow leaving the source s,

then

 Val(f) = ∑ – ∑ ∈ ∈ .

 In other words,

 Val(f) = ∑ – ∑ ∈ , ∈ , .

Maximum flow problem

The maximum flow in an s-t network can be found by augmenting the flow iteratively

until no further augmentation is possible. It may be seen that an assignment of a maximum

flow is not unique. Let f be a flow in a network G (V, E) , and let there be a directed path

p = s-e1-v1-e2-v2-…-ek-t

 such that f(ei) < c(ei) for i = 1 to k, where s, v1, v2,…,t ∈ V, and e1, e2, …,ek ∈ E.

 Now considering the capacity on each edge, the flow can be augmented by as much as

∆p = c(ei) – f(ei). However, to maintain the conservation of flow at each node vi, increase on

all the edges of the path must be equal.

 Thus, the largest possible value of ∆p = minimum {c(ei) – f(ei)}.

f-augmenting path

A semi s-t path is a sequence of vertices and edges p = s-e1-v1-e2-v2-…-ek-t such

that each vertex except t, is followed by an edge, which may be either a forward edge or a

backward edge. An edge ei is called a forward edge if it is directed from vertex vi−1 to

vertex vi, and edge ei is called backward edge if it is directed from vi to vi-1. An f-

augmenting path is a semi s-t path such that the flow on each forward edge can be

increased, and the flow on each backward edge can be decreased.

For each edge e on an f-augmenting path, the quantity ∆e is called the slack on edge e, and

is given by,

 ∆e =
 − , i i w ,

 , i i w .

15

Max-flow min-cut theorem

The theorem states that for a given network, the value of a maximum flow is equal to

the capacity of a minimum cut.

Algorithm for finding maximum flow

begin

 for each edge e in a network G

 f(e) :=0;

 while there exists an f-augmenting path in a network

 begin

 find an f-augmenting path p;

 let ∆p = minimum{∆e} , where e∈ p;

 for each edge e ∈ p

 begin

 if e is a forward edge then

 f(e) := f(e) + ∆p

 else

 f(e) := f(e) − ∆p;

 end;

 end

 end;

Matching in a graph

A matching in a graph G is a set of edges, which have no endpoints in common. It is

also called a matching set and is denoted by M. A maximum matching is a matching with

maximum number of edges. A matching is called maximal, if it is not a proper subset of any

other matching. A perfect matching is a matching which matches all vertices of the graph;

that is, every vertex of the graph is the end vertex of an edge of the matching. Note that if a

graph has odd number of vertices, then it cannot have a perfect matching. Every perfect

matching is maximum, and thus maximal. A near-perfect matching is one in which exactly

one vertex is unmatched. This may occur when a graph has an odd number of vertices, and

the matching defined is maximum.

Matching in a bipartite graph

We know that in a bipartite graph a vertex bipartition exists. Let G be a bipartite graph such

that < X, Y > be a bipartition, then the set of edges having one end in X and other in Y

without common end points is a matching.

Covering in a graph

Vertex-cover

Let G(V, E) be a graph. Let C be a subset of vertex set V. Then the subset C is

called a vertex-cover of graph G if every edge of G is incident on at least one vertex in C.

16

Obviously, the set of all vertices V is a vertex-cover. A vertex-cover is called minimum

vertex-cover if it has least number of vertices. A minimum vertex-cover of a graph can be

obtained by finding all possible vertex-covers exhaustively, and then selecting the minimum

one. However, the minimum may not be unique.

Note

Let G(V, E) be a graph. Let M be a matching in G, and C be a vertex-cover of it.

 Then |M| ≤ |C|.

 If |M| = |C|, then M is a maximum matching and C a minimum vertex-cover.

The converse may not be true in general. However, it does hold if G is bipartite.

 If G is bipartite then the number of edges in a maximum matching in G is equal

to the number of vertices in a minimum vertex-cover of G.

Edge-cover

An edge-cover of a graph G(V, E) is a subset C of E, such that each vertex of G is

incident with at least one edge in C. A minimum edge-covering is an edge-covering of

least size. A perfect matching is always a minimum edge-covering. The set of all edges in a

connected graph is an edge-cover. A minimum edge-cover of a graph can be obtained by

finding all possible edge-covers exhaustively, and then selecting the minimum one.

PERT

PERT means program evaluation and review technique. It is a statistical tool used in project
management, which was designed to analyze and represent the tasks involved in completing
a given task/project.

It was developed by the United States Navy in 1958, it is commonly used in conjunction with
the critical path method (CPM).

PERT is a method of analyzing the jobs involved in completing a given project, especially the
time needed to complete each job, and to identify the minimum time needed to complete the
total project.

It incorporates uncertainty by making it possible to schedule a project. It is more of an event-
oriented technique rather than start- and completion-oriented, and is used more in these
projects where time is the major factor rather than cost. PERT is a management tool, which
is implemented by arrow/directed edge and node/vertex diagram of activities and events.

 3

 1 1 3

 2 2

 4 1 2 2

 PERT graph

2

4

2

4

https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Task_(project_management)
https://en.wikipedia.org/wiki/Project
https://en.wikipedia.org/wiki/United_States_Navy
https://en.wikipedia.org/wiki/Critical_path_method

