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 TREE    

A graph is said to be tree if it is acyclic. 

 

 Spanning tree    

 A spanning tree T contains all vertices of the graph and has no closed paths.   

Example: 

       a                           b               a                            b                        a            a 

 

    c                      d                      c                     d           f            c                        d 

                                             f                                                                                                                               

           e                                                           e                                    e                       f 

 (i) connected graph G              (ii)spanning tree T1                (iii)spanning tree T2 

   Figure -  Graph and spanning trees 

 

 

 Minimum Spanning tree 

   A spanning tree with least sum of weights among all the spanning trees of a weighted 

graph is called the minimum spanning tree. A minimum spanning tree is not unique,  

Kruskal's algorithm 

    Let T be the empty spanning tree.  

(1) Arrange the set of edges E of the graph in the increasing order of the weights.   

(2) Delete the first edge in the set E and add it to the tree T if and only if no 

closed path is formed in the tree. 

(3) Repeat from step 2, if E is not empty. Otherwise stop. 

                   T is the required minimum spanning tree. 

Prim's algorithm 

 

  Start from any vertex. Build the minimum spanning tree by deleting edges from the 

edge set E and adding them to the tree T.   

(1) Select an arbitrary vertex v ∈ V and add it to V’.  
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(2) Select an edge (x, y) from E with minimum weight such that one of its end 

vertices is in V’ and other in V – V’. Add this edge to the tree T only if it 

doesn’t cause to create a closed path in T. If more than one edge satisfy this 

condition then select any of these edges arbitrarily. Also add vertices u and v 

to V’ if already not there.  

(3) Repeat from step 2, if V’ ≠ V. Otherwise stop. 

                   T is the required minimum spanning tree. 

 

Theorem  

 The sum of the degrees of all the vertices in a graph is equal to twice the number of edges. 

Proof 

 Let us prove this theorem by induction. Consider a graph G = (V, E). 

(1) Let G contains no edge, 
                                      i.e. number of edges = 0,  

             ⇒ sum of the degrees of all the vertices  = 0, 

                                                                        = 2 x 0, 

             ⇒ theorem is true. 

(2) Let G contains one edge. Then there may be either two vertices in G which are the 

two   ends of the edge or the edge may be a loop on one vertex. In both the cases 

sum of the degrees will be 2.   

                                            i.e. number of edges = 1,  

             ⇒ sum of the degrees of all the vertices  = 2, 

                                                                              = 2 x 1, 

             ⇒ theorem is true. 

(3) Let the theorem is true for an arbitrary graph with number of edges = e, 

                          i.e.  sum of the degrees of all the vertices  = 2e. 

           

                Now add one edge in the graph, then total number of edges = e + 1.  

                  Note that addition of an edge will increase the total degree of the graph by 2  

             Therefore, the sum of the degrees of all vertices  = 2e +2, 

                                                                                                  = 2 x (e +1), 
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                                                                                    = 2 x number of edges. 

             Hence theorem is true. 

   Theorem  

      In a graph G, the number of vertices of odd degree is even.  

Proof 

 Consider a graph G = (V, E) such that it contains some vertices of odd and some of even 

degree. Partition the set of vertices into two categories, 

(i) Vertices of odd degree and 

(ii) Vertices of even degree. 

Then total degree of the graph = sum of degrees of odd degree vertices + sum of degrees of 

even degree vertices. 

Further,  

              (a)  the total degree of the graph is even = 2m, say.          

   and     (b) the sum of the degrees of even degree vertices will be even, naturally = 2n, say. 

Therefore,  

             2m = sum of degrees of odd degree vertices + 2n, 

 ⇒ sum of degrees of odd degree vertices = 2m – 2n, 

              = 2(m – n), 

              = even. 

⇒ Number of vertices of odd degree will be even; because only the sum of even 

number of odds can be even. 

        Hence theorem is proved. 

Theorem  

 The total number of edges in a complete graph with n vertices is n(n – 1)/2.  

Proof: Consider a complete graph Kn.  

        In a complete graph with n vertices, each vertex is connected with other n – 1  vertices. 

Therefore degree of each vertex = n – 1, 

       ⇒ total degree = n(n – 1) 

      ⇒ 2 × number of edges in the graph = n(n – 1)    
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                   Hence, total number of edges in the graph = n(n – 1)/2. 

 

Theorem  

Every cut set in a connected graph G contains at least one edge of every spanning tree of G. 

Proof 

 Consider a graph G and let S be a cut set of it. Also let T be a spanning tree of it. 

       A spanning tree contains all the vertices of the graph which are connected by the edges. 

There is no loop or closed path in the tree, and therefore, all the edges are essential to keep 

the tree a connected graph. Clearly to disconnect the tree, at least one edge has to be 

deleted. Therefore every cut set in a connected graph G contains at least one edge of every 

spanning tree of G. 

 

Dijkstra’s shortest path algorithm 

             Consider a connected graph G = (V, E). Let a and z be two vertices. The aim is to 

find the shortest path between a and z.   

 Partition the set V of vertices into two sets, P and T, such that P contains a and T = V – P. 

(1) Initially P ∶=  {a}; mark vertex a visited by enclosing it in a circle. 

             T ∶=  V – {a}, 

         For every vertex r in T let    i(r) ∶= w(a, r),  

                where w(a, r) ∶= ∞, if a and r are not adjacent, 

                                      ∶= weight of the edge (a, r), otherwise. 

               Call i(r), the index of vertex r. 

              Also attach path, the sequence of vertices with i(r) whose weight is w(a, r) 

if w(a, r) ≠ ∞. Leave blank, otherwise. Blank is shown by a dash symbol(−).    

(2) Select a vertex x in T that has the minimum index; mark x visited by enclosing it in a 

circle. 

    If x = z, stop and exit; shortest path is the  

          sequence of vertices attached with i(x) and distance is i(x);  

                  otherwise, move to step 3. 

(3) P’ ∶= P ∪ {x}, 

T’ ∶= T – {x}, 

for every vertex y adjacent to x  in T’, modify its index by the formula 

        i(y) ∶= min{ i(y), i(x) + w(x, y)}. 
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 Also p ∶= p’, 

         T ∶= T’. 

Modify the path (or sequence of vertices) attached with each vertex in T according 

to the new index i(y); i.e. the sequence of the vertices which gives the value i(y). 

(4) Go to step 2.  

        

Paths between vertices 

    Adjacency matrix of a graph can be used to find the paths between each pair of vertices. 

Let A be the adjacency matrix. Find the powers of A; i.e. A2,  A3, …An
  etc. Denote an 

element of adjacency matrix Ak
 by ak(i, j) . Then ak(i, j)  gives the number of paths of length k 

from vertex vi to vertex vj. 

        Also let Br = A + A2 + A3  … + Ar
. then bij, element in ith row and j

th column gives 

the number of paths of length r or less from vertex  vi to vertex vj.  

Path matrix 

      Let G be a graph with n vertices. Then a square matrix P of order n×n is called the path 

matrix of the graph G, such that the element  

        pij = 1 , if there is  a path from vertex vi to vj, 

             = 0, otherwise.                                                    

   

Let A be the adjacency matrix of the graph G with n vertices. Compute A2 ,  A3 , … , An. 

Also find Bn = A + A2 + A3  … + An
. Form a matrix P by replacing the non zero 

elements of matrix Bn  by 1. This P will be the path matrix of the graph G. If all the elements 

in the path matrix  of a graph are 1, then it is called strongly connected. 

Warshall's algorithm 

     A path matrix is also called transitive closure of the graph. Here, the algorithm is written 

in pseudo Pascal code.  Consider a directed graph G =(V, E) and let M be its adjacency 

matrix. Matrix M is Boolean consisting of elements 0 or 1. Path matrix P is computed by 

execution of this algorithm.    
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 begin 

          for i  ∶= 1 to n do 

                        M[i, i] ∶= 1;              

                for i  ∶= 1 to n do 

                   ( 

                        for j  ∶= 1 to n do 

                              ( 

                                if M[j, i] = 1 then  

                                      for k ∶= 1 to n do 

                                              M[j, i] ∶= M[j, i] ⋁ M[i, k];     

                           )                                                             

                         )                                                                   

                for i  ∶= 1 to n do 

                    ( 

                        for j  ∶= 1 to n do 

                                 P[j, i] ∶= M[j, i];              

                    ) 

         end;                                                     

Example  

                              b                        d                                           

 

        a 

                           c                               e 

                              

                          Graph G                                                                                               
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                            a     b   c   d   e                                                           

                  a       0     1   0   0   0                                               

                  b       0     0   1   1   0                                                                          

                  c       1     0    0   0   0                                                       

                  d      0    0    0    0   1                                                                

                   e      0    0    1     0   0    

                                      

                             Adjacency matrix  

                                   

                            a     b   c   d   e                                                           

                  a       1     1   1   1   1                                               

                  b       1     1   1   1   1                                                                          

          P =  c        1     1   1   1   1                                                       

                  d       1     1   1   1   1                                                                

                   e      1     1   1   1   1    

 

                                  Path matrix 

 

When algorithm is executed completely, the path matrix P is obtained. Since all the elements 

of P are 1 therefore matrix P is strongly connected.  

Tree traversal 

   

       A binary tree can only be accessed by its root; i.e. the beginning of the traversal is 

only possible from its root.  Addresses of other vertices in the tree are stored in their 

preceding vertices.  

Preorder tree traversal 

  Consider a binary tree T with root R. 

(1) Process the root R. 

(2) Traverse the left sub tree of R in preorder.  

(3) Traverse the right sub tree of R in preorder.  
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                Process means performing some operation like reading the data. The algorithm is 

also read as root-left-right 

Inorder tree traversal   

(4) Traverse the left sub tree of R in inorder.  

(5) Process the root R. 

(6) Traverse the right sub tree of R in inorder.  

             It is also read as left-root-right. 

 Postorder tree traversal   

(1) Traverse the left sub tree of R in postorder.  

(2) Traverse the right sub tree of R in postorder.  

(3) Process the root R. 

          It is read as left-right-root. 

     Notice that all the three algorithms are similar, except the change in the order of 
execution of the three statements.  

Expression trees 

       An arithmetic expression can be computed using an expression tree.  It is a binary tree 

that stores numeric data in the leaves of the tree. Operators of the expression are stored in 

the interior nodes of the tree. Computation is performed in three ways: prefix, infix and 

postfix that resemble the three traversal procedures given above. For instance, consider 

expression x = 2 + 3 ∗ 4 − 7. This expression may be evaluated ambiguously resulting in 

different values if we do not have operator precedence in mind; i.e. it may be (2 + 3) ∗ 4 − 7 

or 2 + (3 ∗ 4) − 7 etc. Therefore, expression may be parenthesized to remove the ambiguity. 

A fully parenthesized expression, like ((2 + 3) ∗ 4 ) − 7  has no ambiguity and results in one 

value.  

        If an expression is fully parenthesized its expression tree will be unique. Construction of 

an expression tree is easy if the expression is given in infix form.  

      Let the expression be ((2 + 5) ∗ 4 ) – ((8 + 3 )∗( 4 – 7)). This is fully parenthesized and 

hence is unambiguous. This can be divided into two sub expressions which are on the left 

and right of the operator ‘− ‘ . 

1. ((2 + 5) ∗ 4 ) and  

2. ((8 + 3 )∗( 4 – 7))      

   Operator ‘−‘ will form the root of the tree. The first expression will constitute the left sub 

tree and the second right sub tree.  
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        Postfix notation is also called reverse polish notation (RPN) and it is used in some 

calculators for arithmetic computation. RPN can easily be computed by using a data 

structure stack.  Stack is a data structure in which elements are added and deleted from 

only one end called top of the stack. The data added last is deleted first. Hence, it is called 

last in first out (LIFO) structure.  

 

 

Cut point 

A vertex in a graph G is called a cut point if its deletion makes the graph disconnected.  

 

                     a                          b                     cut points               g 

                                                               

                                                                   d                    e 

                      C                                                                                         f 

                                                                    Figure –Cut points 
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 Bridge 

    An edge of a graph is called a bridge if its deletion makes the graph disconnected.  

 

                     a                           c                     bridges                   g 

                                                               

                                                                     d                    e 

                                                   b                                                       f 

                                                                     Bridges 

     Edge-cutset 

An edge-cutset of a graph is the collection of edges whose removal makes the graph 

disconnected.  

 

                                                                 b                           e                   

                                                               

                                             a                       c                    f                       h 

                                                                 d                        g                             

                              Edge-cutset {(b, e), (c, f), (d, g)} 

 

 

 Vertex-cutset 

A vertex-cutset of a graph is the collection of vertices whose removal makes the graph 

disconnected.  

                                                                 

                                                                 b                           e                   

                                                               

                                             a                       c                    f                       h 

                                                                 d                        g                             

                             Vertex-cutset {b, c, d} 
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Partition-cutset 

Let G1 and G2 be two sets of vertices of graph G such that G1 and G2 form a partition of G. 

Then the collection of all edges of G having one end point in G1 and the other end point in G2 

is called a partition-cutset. Removal of partition-cutset from the graph makes the graph 

disconnected.  

Vertex-connectivity 

The vertex-connectivity of a connected graph G is the minimum number of vertices whose 

deletion can either disconnect G or reduce it to a single vertex graph. It is denoted as Kv.  

                                 Vertex-connectivity             

                                                                  b                          e                   

                                                               

                                             a                       c                    f                       h 

                                                                 d                        g                             

                                  Vertex-connectivity {e, g} 

Edge-connectivity 

The Edge-connectivity of a connected graph G is the minimum number of edges whose 

deletion can disconnect G. It is denoted as Ke.                                  

                                                                  b                          e                   

                                                               

                                             a                       c                    f                       h 

                                                                 d                        g                             

         Edge-connectivity Ke = 3 with edge-cutset {(b, e), (c, f), (d, g)} 
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Internally disjoint paths 

Let G be a graph. Let a and b be any two of its vertices. Let us call a path of G a−b path 

if  a is initial vertex and b is final vertex of the path. A vertex v is called the internal 

vertex of a−b path if it is neither the initial vertex nor the final vertex of the path. A set of 

a−b paths in G is said to be internally disjoint if no two paths in the set have an 

internal vertex in common.  

                                          Internally disjoint paths 

 

                                                                  b                           e                   

                                                               

                                             a                       c                    f                       h 

                                                                 d                        g                             

                              Internally disjoint paths  

 

 (viii) k-edge-connected graph 

Let G be a graph. Then G is said to be k-edge-connected, if G is connected and Ke ≥k.  

 

Menger’s theorem 

 

 Let G be an undirected graph, and let a and b be two non-adjacent vertices in G. 

Then, the maximum number of internally-disjoint a-b paths in G equals the minimum number 

of vertices from V − {a, b} whose deletion separates a and b. Here, V is the set of all vertices 

of G. 

 

Flow-network  

  A flow-network, G = (V, E) is a directed graph with V the set of vertices ( or nodes), 

and E the set of edges (or arcs) such that each edge e ∈ E has a capacity c(e) ≥ 0. In the 

flow-network, if a node has only outgoing edges it is called source. In contrary, if a node has 

only incoming edges, it is called sink. In graph, source node is designated with s, and sink 

as t.  
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                                                                    b            3             c 

                                                             6                       

                                  source   s                   5               5                8     

                                                          4 

                                                                 a                  7                 t    sink 

Flow-network  

Feasible flow  

A feasible flow in a flow-network is a function f: E ⟶ℝ; where E is the set of edges, and 

ℝ, the set of non-negative real numbers. A feasible flow satisfies the following constraints. 

(i) Capacity constraint: f(e)≤ c(e); where f(e) is the actual assigned flow value to an 

edge, and c(e), the capacity of edge e. 

(ii) Conservation constraint: for every vertex v, ∑ In(v) = ∑ Out(v); where, In(v) is the 

incoming flow, and Out(v), outgoing flow of node v. 

Each edge of the flow-network in a feasible flow has two labels: capacity and actual flow. 

First digit shows the capacity of the edge while second, actual flow through it.  

                                                                    b            3, 3         c 

                                                            4, 3                       

                                  source   s                   5, 3          6,1             8, 2     

                                                          6, 4 

                                                                 a                  7, 5             t    sink 

A feasible flow in a flow-network  

Multiple Sources/Sinks 

A flow-network may contain more than one source, and more than one sink nodes.  

                                                        source  s2 
 
                                                                    4               6 
                                                                   a            3              b 

                                                             4                        9                  5                    

                                  source   s1                   5              6                8            t2 sink   

                                                          6 

                                                                    c              7                 t1    sink 

Multiple Sources/Sinks  
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Cut sets in flow-networks 

      Let F be a flow-network. Partition the set of vertices V into two sets Vs and Vt such that 

source s ∈ Vs, and sink t ∈ Vt. Since, Vs and Vt form a partition of V, therefore, it is obvious 

that Vs ∪ Vt = V, and Vs ∩ Vt = ∅.  

       Set of all edges, which are directed from vertex set Vs to vertex set Vt is called an s-t cut  

and is denoted as < Vs, Vt >. A minimum s-t cut is a cut with minimum capacity. 

 

Relation between flows and cuts 

There is a direct relationship between a flow and a cut. In fact, the value of any flow 

equals the total flow across the edges of the cutset < { s }, V−{s} >. Here, V is the set of 

vertices, and Vs = {s} and Vt = V – {s}. Let Val(f) denotes the net flow leaving the source s, 

then 

                              

                                     

   Val(f) = ∑      – ∑       ∈        ∈       . 

 In other words, 
                         

       Val(f) = ∑      – ∑       ∈            ,          ∈        ,          . 

 
 
Maximum flow problem 

The maximum flow in an s-t network can be found by augmenting the flow iteratively 

until no further augmentation is possible. It may be seen that an assignment of a maximum 

flow is not unique.  Let f be a flow in a network G (V, E) , and let there be a directed path  

p = s-e1-v1-e2-v2-…-ek-t 

 such that f(ei) < c(ei) for i = 1 to k, where s, v1, v2,…,t ∈ V, and e1, e2, …,ek ∈ E. 

    Now considering the capacity on each edge, the flow can be augmented by as much as  

∆p = c(ei) – f(ei). However, to maintain the conservation of flow at each node vi, increase on 

all the edges of the path must be equal.  

        Thus, the largest possible value of ∆p = minimum {c(ei) – f(ei)}. 

f-augmenting path 

A semi s-t path is a sequence of vertices and edges p = s-e1-v1-e2-v2-…-ek-t such 

that each vertex except t, is followed by an edge, which may be either a forward edge or a 

backward edge. An edge ei is called a forward edge if it is directed from vertex vi−1 to 

vertex vi, and edge ei is called backward edge if it is directed from vi to vi-1.  An f-

augmenting path is a semi s-t path such that the flow on each forward edge can be 

increased, and the flow on each backward edge can be decreased.  

For each edge e on an f-augmenting path, the quantity ∆e is called the slack on edge e, and 

is given by, 

             ∆e =  
    −      ,                     i     i       w        ,

    ,                             i     i        w         .  
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Max-flow min-cut theorem   

The theorem states that for a given network, the value of a maximum flow is equal to 

the capacity of a minimum cut. 

  

Algorithm for finding maximum flow 

begin 

  for each edge e in a network G 

  f(e) :=0;                               

  while there exists an f-augmenting path in a network  

   begin                          

   find an f-augmenting path p; 

   let ∆p = minimum{∆e} , where e∈ p; 

   for each edge e ∈ p 

   begin 

    if e is a forward edge then 

    f(e) := f(e) + ∆p 

    else        

         f(e) := f(e) − ∆p; 

     end; 

    end 

    end;  

 

Matching in a graph  

A matching in a graph G is a set of edges, which have no endpoints in common. It is 

also called a matching set and is denoted by M.  A maximum matching is a matching with 

maximum number of edges. A matching is called maximal, if it is not a proper subset of any 

other matching. A perfect matching is a matching which matches all vertices of the graph; 

that is, every vertex of the graph is the end vertex of an edge of the matching. Note that if a 

graph has odd number of vertices, then it cannot have a perfect matching. Every perfect 

matching is maximum, and thus maximal. A near-perfect matching is one in which exactly 

one vertex is unmatched. This may occur when a graph has an odd number of vertices, and 

the matching defined is maximum.  

 

Matching in a bipartite graph 

We know that in a bipartite graph a vertex bipartition exists. Let G be a bipartite graph such 

that < X, Y >  be a bipartition, then the set of edges having one end in X and other in Y 

without common end points is a matching.  

Covering in a graph 

Vertex-cover 

Let G(V, E)  be a graph. Let C be a subset of vertex set V. Then the subset C is 

called a vertex-cover of graph G if every edge of G is incident on at least one vertex in C. 
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Obviously, the set of all vertices V is a vertex-cover. A vertex-cover is called minimum 

vertex-cover if it has least number of vertices. A minimum vertex-cover of a graph can be 

obtained by finding all possible vertex-covers exhaustively, and then selecting the minimum 

one. However, the minimum may not be unique.  

Note  

Let G(V, E) be a graph. Let M be a matching in G, and C be a vertex-cover of it. 

 Then |M| ≤ |C|. 

  If |M| = |C|, then M is a maximum matching and C a minimum vertex-cover. 

The converse may not be true in general. However, it does hold if G is bipartite. 

 If G is bipartite then the number of edges in a maximum matching in G is equal 

to the number of vertices in a minimum vertex-cover of G. 

Edge-cover 

An edge-cover of a graph G(V, E) is a subset C of E, such that each vertex of G is 

incident with at least one edge in C. A minimum edge-covering is an edge-covering of 

least size. A perfect matching is always a minimum edge-covering. The set of all edges in a 

connected graph is an edge-cover. A minimum edge-cover of a graph can be obtained by 

finding all possible edge-covers exhaustively, and then selecting the minimum one.  

   

 

PERT 

PERT means program evaluation and review technique. It is  a statistical tool used in project 
management, which was designed to analyze and represent the tasks involved in completing 
a given task/project. 

It was developed by the United States Navy in 1958, it is commonly used in conjunction with 
the critical path method (CPM). 

PERT is a method of analyzing the jobs involved in completing a given project, especially the 
time needed to complete each job, and to identify the minimum time needed to complete the 
total project.  

It incorporates uncertainty by making it possible to schedule a project. It is more of an event-
oriented technique rather than start- and completion-oriented, and is used more in these 
projects where time is the major factor rather than cost. PERT is a management tool, which 
is implemented by arrow/directed edge and node/vertex diagram of activities and events. 
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https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Task_(project_management)
https://en.wikipedia.org/wiki/Project
https://en.wikipedia.org/wiki/United_States_Navy
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