
1 | D T I C S P C (C S - 2 0 1)

1. Static RAM vs Dynamic RAM

S. No. Static RAM Dynamic RAM

1 It consists of transistors only. It consists of transistors and capacitors.

2 SRAM are faster than DRAM. DRAM are slower than SRAM

3 SRAM are used in cache memory. It is used in main memory.

4 SRAM consumes less power than DRAM. DRAM consumes more power than SRAM.

5 Its structure is complex. Its structure is simpler than SRAM.

6 It consumes more physical space in computer

system as compared to DRAM.

It consumes less physical space in computer

system as compared to SRAM.

7 SRAM does not need periodic refreshment of

data.

DRAM needs periodic refreshment to maintain

the charge in the capacitor.

2. Compiler vs Interpreter

S. No. Compiler Interpreter

1 Compiler is a translator that converts the high

level language (HLL) program into object code.

Interpreter is a translator that converts the HLL

(unstructured programming/ structured

programming) program into object code.

2 It checks the whole program at a time. It checks the program line by line.

3 Compiler is not a good debugger. Interpreter is a good debugger.

4 Its execution time is less as compared to

interpreter.

Its execution time is more as compared to

compiler.

5 Object code for the HLL program will not be

created until all errors are modified.

It stops the execution of program whenever it

found an error in a statement and display the

error message on the screen promptly.

6 Programming language like C++ and C use

compilers.

Programming language like Ruby, Python make

use of interpreter.

3. Operator Associativity vs Operator Precedence

S. No. Operator Associativity Operator Precedence

1 When an expression has two operators with the

same precedence, the expression is evaluated

according to its associativity.

When two operators share an operand the

operator with the higher precedence goes first.

2 Associativity can be either left-to-right or right-to-

left, depends on the expression.

If two or more operators are involved in an

expression, C language has a predefined rule of

priority for operators.

3 Associativity means whether an expression like x

R y R z (where R is an operator such as + or <=)

should be evaluated `left-to-right' i.e. as (x R y) R

z or `right-to-left' i.e. as x R (y R z).

Precedence determines how an expression like x

R y S z should be evaluated (now R and S are

different operators). If R has higher precedence

than S, it will be evaluated as (x R y) S z, while

if S has higher precedence than R it will be

treated as x R (y S z).

