
FACULTY OF ENGINEERING AND TECHNOLOGY

UNIVERSITY OF LUCKNOW

LUCKNOW

Computer System and Programming in ‘C’

CS-101/201

Er. Zeeshan Ali Siddiqui

Assistant Professor

Deptt. of C.S.E.

FUNCTIONS

Function-Overview

• In C language, a function is a block of code (a group of statements)
that performs a specific task. It has a name and it is reusable i.e. it
can be executed from as many different parts in a C Program as
required. It also optionally returns a value to the calling program

Properties:

• A unique name.

• Independent

• Reusable

• Performs a specific task

• Returns a value (optional)

Function type

• Two types:

1. Library function or system defined function

2. User defined function

Library function/System defined function

• System defined functions can’t be modified, it can only
read and can be used.

• These function are supplied with every C compiler.

• Some examples: printf(), scanf(), getch(), clrscr(), etc.

User defined function

• The user defined functions defined by the user according
to its requirement.

• Function skeleton:

return_type function_name(parameter list)

{

body of the function

}

User defined function: Ingredients

• Return Type: A function may return a value. The return_type is the data type of

the value the function returns. Some functions perform the desired operations
without returning a value. In that case, the keyword void is the return type.

• Function Name: This is the actual name of the function. The function name and

the parameter list together constitute the function signature.

• Parameters: A parameter is like a placeholder. When a function is invoked, we

pass a value to the parameter. The parameter list refers to the type, order, and
number of the parameters of a function. Parameters are optional; that is, a
function may contain no parameters.

• Function Body: The function body contains a collection of statements that

define what the function does.

User defined function: Terminology
• Function declaration:- Function declaration is also known as function

prototype. It inform the compiler about three thing, those are name of the function,
number and type of argument received by the function and the type of value returned
by the function. While declaring the name of the argument is optional and the
function prototype always terminated by the semicolon.

• A function declaration has the following parts:

return_type function_name(parameter list);

Function definition:- Function definition consists of the whole code of the

function. It tells about what function is doing what are its inputs and what are its output It
consists of two parts function header and function body.

return_type function_name(parameter list) //function header

{

body of the function

}

User defined function: Example1

Function Call

• When the function get called by the calling function then that is called, function call.

• Example:- function(arg1,arg2,arg3);

• Actual arguments: The argument that are used inside the function call. These are the
original values and copy of these are actually sent to the called function.

• Example:- Sumresult = sum(a, b); //actual arguments

• Formal arguments/dummy arguments: The arguments which are mentioned in
function definition. dummy arguments are used to hold the copy of the values that
are sent by the calling function through the function call.

• Example:- int sum (int x, int y) //formal/dummy arguments

{

return x+y;

}

Note: Data type and Order number of actual arguments in the function call should be
match with the Data type and order number of the formal arguments.

Keyword return

• It is used to return value to the calling function. It can be used in
two way as:

• return //used to terminate the function without returning any value

Or

• return(expression);

• Example:-

• return a;

• return (a);

• return (a*b);

• return (a*a+b);

User defined function: Example2

Category of Function: Based on
argument and return type

Category of Function: Based on argument
and return type

1. Function with no argument and no return value

2. Function with no argument but return value

3. Function with argument but no return value

4. Function with argument and return value

Function with no argument and no return value

Function with no argument but return value

Function with argument but no return value

Function with argument and return value

Any idea?

• Through function, can we send back more
than one value?

Methods of passing the arguments
to the function

Call by value

• Copy of the actual argument is passed to the formal
argument and the operation is done on formal/dummy
argument.

• It does not affect content of the actual argument.

• Changes made to formal argument are local to block of
called function so when the control is back to calling
function the changes made is disappear.

Call by value: Example

Call by reference

• In call-by-reference, address of the variable is passed to
the calling function by the called function.

• If data is passed by reference, a pointer to the data is
copied instead of the actual variable as is done in a call by
value. Because a pointer is copied, if the value at that
pointers address is changed in the function, the value is
also changed in main().

• Called function works on the original variables. So, the
changes are automatically reflected in the calling
function.

Call by reference: Example

Recursive function

Recursive function

• A function is recursive, if a statement in the body of the
function calls itself.

• Recursion is the process of defining something in terms of
itself.

• The speed of a recursive program is slower because of
stack overheads.

• A recursive function must have recursive conditions,
terminating conditions, and recursive expressions.

Recursive function: Example1

Recursive function: Example2

Function-Advantages

• Top down modular programming.

• Reduced code.

• Easy error detection.

• Reusability.

• ? (Homework)

Exercise
• What is the difference between call by value and call by reference?

Explain with the help of a program for swapping the two numbers.

• What is the difference between recursion and iteration?

• Write a C program to keep calculate the sum of the digits of a
number until the number is a single digit. For example: Input=2018,
Process: 2018=>2+0+1+8=11, now 11=> 1+1=2. So Output=2.

• Write recursive functions to -
– Find the factorial of a given number.

– Find GCD.

– Generate the Fibonacci series up to n terms.

– Find the sum of first n integers.

STORAGE CLASSES

Storage Classes

• Storage class tells us:

1. Storage place (where variable would be stored).

2. Default Initial value (default value of the variable).

3. Scope (specifies the part of the program which a variable is
accessed).

4. Life time (It is the time between the creation and distribution of a
variable or how long would variable exists).

Storage Classes: Types

• There are four types of storage classes:

1. Automatic storage class

2. Register storage class

3. Static storage class

4. External storage class

Automatic storage class

• Keyword: auto

• Features:

1. Storage place (Main memory).

2. Default Initial value (Garbage value).

3. Scope (Local to the block).

4. Life time (With in the block in which the variable is defined).

Note: The variable without any storage class specifier is called
automatic variable.

Automatic storage class: Examples

Register storage class

• Keyword: register

• Features:

1. Storage place (CPU registers).

2. Default Initial value (Garbage value).

3. Scope (Local to the block).

4. Life time (With in the block in which the variable is defined).

Register storage class: Example

Static storage class

• Keyword: static

• Features:

1. Storage place (Main memory).

2. Default Initial value (zero).

3. Scope (Local to the block).

4. Life time (value of the variable persists between different function
calls).

Static storage class: Example

External storage class

• Keyword: extern

• Features:

1. Storage place (Main memory).

2. Default Initial value (zero).

3. Scope (Global).

4. Life time (as long as the program execution doesn’t come to an
end).

External storage class: Examples

Exercise
• Can we apply address operator on register variable?

• Can we apply storage classes only for integers, characters, pointer
type? Explain.

• Give limitations of register storage class.

• Variable stored in register storage class always access faster. How
will you reap this benefit?

• Write the output of below program-
int main()

{
static int num = 2020;

printf("%d\t", num);

num=num - 505;

if(num)

main();

return 0;

}

Thank You.

BTQ

BTQ: Brain Teaser Question

Which word does not belong in the following list:
Stop pop cop mop chop prop shop or crop?

