
Operating System: Deadlock Handling
Dr. Puneet Misra

Department of Computer Science,

University of Lucknow,

Lucknow PIN-226007

<puneetmisra@gmail.com>

Agenda
• Deadlock

• Deadlock Problem & Example- Bridge Crossing Problem

• The cause, System Model & Normal Resource Allocation Operation

• Necessary conditions for deadlock

• Methods for handling Deadlock

• Resource Allocation Graph (RAG)

• Deadlock Prevention

• Deadlock Avoidance

• Recovery from Deadlock

Deadlock:

Waiting for

Assigned toWaiting for

Resource-1

Process-2

Resource-2

Process-1

Assigned to

• A deadlock is a situation wherein
two or more competing actions are
each waiting for the other to finish,
and thus neither ever does. It is
often seen in a paradox like the
"chicken or the egg".

• It is a condition in which two
computer programs sharing the
same resource are effectively
preventing each other from
accessing the resource, resulting in
both programs ceasing to function.

Deadlock Problem:
Deadlock refers to a specific condition when two or more processes are
each waiting for each other to release a resource, or more than two
processes are waiting for resources in a circular chain.

Example

• Client applications using the database may require exclusive access to
a table.

• Two client applications C1 and C2.

• If C1 holds lock on table, attempts to obtain on the other i.e. already
held by C2.

• This may lead to deadlock if the C2 application then attempts to
obtain the lock that is held by the C1 application.

Example- Bridge Crossing

• Each segment of road can be viewed as a resource
• Car must own the segment under them
• Must acquire segment that they are moving into

• For bridge: must acquire both halves
• Traffic only in one direction at a time
• Problem occurs when two cars in opposite directions on bridge: each acquires

one segment and needs next

• If a deadlock occurs, it can be resolved if one car backs up (preempt
resources and rollback)
• Several cars may have to be backed up

More examples:
• “It takes money to make money.”

• “You can't get a job without experience; you can't get experience without a job.”

Each process needing what another process has. This results is blocking from

sharing resources such as memory, devices, links.

A system consists of a finite no. of resources for no. of competing processes:

✓Resource types R1, R2, . . ., Rm

✓CPU cycles, memory space, files and I/O devices

System Model:

The cause of deadlocks:

Normal Resource Allocation Operation

Each resource type Ri has Wi instances. Each process utilizes a resource
as follows:

1. Request a resource: if request not granted, then process should
wait to acquire.

2. Use the resource: process can operate on the resources.

3. Release the resource: the process releases the resources.

Deadlock Characterization:

Necessary Conditions for Deadlock to occur: Deadlock can arise if following
four conditions hold simultaneously:

✓Mutual exclusion: only one process at a time can use a resource.

✓Hold and wait: a process holding at least one resource is waiting to
acquire additional resources held by other processes.

✓No preemption: a resource can be released only voluntarily by the process
holding it, after that process has completed its task.

✓Circular wait: there exists a set {P0, P1, …, P0} of waiting processes such
that P0 is waiting for a resource that is held by P1, P1 is waiting for a
resource that is held by P2, …, Pn–1 is waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held by P0.

Resource Allocation Graph (RAG)
A visual (mathematical) way to determine if a deadlock has, or may occur.

• G = (V, E) The graph contains nodes and edges.
✓V Nodes consist of processes = { P1, P2, P3, ...} and

resource types { R1, R2, ...}

✓E Edges are (Pi, Rj) or (Ri, Pj)

• An arrow from the process to resource indicates the process is requesting
the resource. An arrow from resource to process shows an instance of the
resource has been allocated to the process.

• Process is a circle, resource type is square; dots represent number of
instances of resource in type. Request points to square, assignment comes
from dot.

Pi
Pi

Pi

Rj Rj

• If the graph contains no
cycles, then no process is
deadlocked.

• If there is a cycle, then:
➢If resource types have multiple

instances per resource type,
then possibility of deadlock
MAY exist.

➢If each resource type has one
instance per resource type,
then deadlock has occurred.

R3 Assigned to P3

P2 Requests P3

Resource allocation graph

Resource Allocation Graph with a
Deadlock

Resource Allocation Graph with a Cycle
But No Deadlock

Methods for handling deadlock
• Prevention/Avoidance

✓Prevention Prevent any one of the 4 conditions from happening.
✓ Avoidance Allow all deadlock conditions but calculate cycles about to

happen and stop dangerous operations.
❑Ensure that system will never enter a deadlock
❑Need to monitor all lock acquisitions
❑Selectively deny those that might lead to deadlock

• Detection/Correction
✓ Detection Know a deadlock has occurred.
✓ Recovery Regain the resources.

❑Allow system to enter deadlock and then recover
❑Requires deadlock detection algorithm
❑Some technique for selectively pre-empting resources and/or terminating tasks

• Ignore
• Ignore the problem and pretend that deadlocks never occur in the system
• used by most operating systems, including UNIX

Most Operating systems do this!!

Deadlock Prevention

Do not allow one of the four conditions to occur.

1. Mutual exclusion:
▪ Automatically holds for printers and other non-sharables.
▪ Shared entities (read only files) don't need mutual exclusion (and aren’t

susceptible to deadlock.)
▪ Prevention not possible, since some devices are intrinsically non-sharable

2. Hold and wait:
▪ Collect all resources before execution.
▪ A particular resource can only be requested when no others are being held. A

sequence of resources is always collected beginning with the same one.
▪ Utilization is low, starvation possible.

Deadlock Prevention (contd..)
Do not allow one of the four conditions to occur.

3. No pre-emption:
▪ Release any resource already being held if the process can't get an additional

resource.
▪ Allow pre-emption - if a needed resource is held by another process, which is

also waiting on some resource, steal it. Otherwise wait.

4. Circular wait:
▪ Number resources and only request in ascending order.

EACH of these prevention techniques may cause a decrease in utilization and/or
resources. For this reason, prevention isn't necessarily the best technique.
Prevention is generally the easiest to implement.

Deadlock Avoidance

If there is prior knowledge of how resources will be requested, it's possible
to determine if we are entering an "unsafe" state.

• Possible states are:
• Deadlock No forward progress can be made.

• Unsafe state A state that may allow deadlock.

• Safe state A state is safe if a sequence of processes exist such that there
are enough resources for the first to finish, and as each finishes and
releases its resources there are enough for the next to finish.

• The rule is simple that If a request allocation would cause an unsafe state,
do not honor that request.

• NOTE: All deadlocks are unsafe, but all unsafes are NOT deadlocks.

Deadlock Avoidance (contd…)

• Requires that the system has some additional a priori information
available.

• Simplest and most useful model requires that each process declare
the maximum number of resources of each type that it may need.

• The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a circular-
wait condition.

• Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes.

Safe State:

• When a process requests an available resource, system must decide if
immediate allocation leaves the system in a safe state.

• System is in safe state if there exists a sequence <P1, P2, …, Pn> of
ALL the processes is the system such that for each Pi, the resources
that Pi can still request can be satisfied by currently available
resources + resources held by all the Pj, with j < i.

• That is:
• If Pi resource needs are not immediately available, then Pi can wait until all Pj

have finished.
• When Pj is finished, Pi can obtain needed resources, execute, return allocated

resources, and terminate.
• When Pi terminates, Pi +1 can obtain its needed resources, and so on.

Safe, Unsafe & Deadlock States:
• If System is in a safe state no

deadlocks

• If system is deadlocked  state is
unsafe

• System is in unsafe state  possibility
of deadlock.
• OS cannot prevent processes from

requesting resources in a sequence that
leads to deadlock

• Deadlock Avoidance
• Ensures system will never enter an unsafe

state
• Thereby avoids the possibility of deadlock

Deadlock Avoidance Concepts:

• Key Ideas:
• Initially the system is in a safe state

• Whenever a process requests an available resource, system will allocate
resource immediately only if the resulting state is still safe!

• Otherwise, requesting process must wait.

• Why does this work?
• By induction, all reachable states are safe states

• By definition, all safe states are not deadlocked

Avoidance Algorithms

• Single instance of a resource type.
• Use a resource-allocation graph

• Cycles are necessary and sufficient for deadlock

• Multiple instances of a resource type.
• Use the banker’s algorithm

• Cycles are necessary, but not sufficient for deadlock

Resource Allocation Graph

• P2 requesting R1, but R1 is
already allocated to P1.

• Both processes have a claim on
resource R2

• What happens if P2 now
requests resource R2?

Unsafe State in Resource Allocation Graph

• Consider the given RAG which
cannot allocate resource R2 to
process P2

• Why? Because resulting state is
unsafe
• P1 could request R2, thereby

creating deadlock!

Resource Allocation Graph Algorithm

• Used only when there is a single instance of each resource type

• Suppose that process Pi requests a resource Rj

• The request can be granted only if converting the request edge to an
assignment edge does not result in the formation of a cycle in the
resource allocation graph

Banker’s Algorithm

• Multiple instances.

• Each process claims maximum resource needs a priori.

• When a process requests a resource it may have to wait.

• When a process gets all of its resources it must return them in a finite
amount of time.

Data Structures for Banker’s Algorithm
• Let n = number of processes and m = number of resources types

• Available: Vector of length m. If Available[j] = k, there are k instances
of resource type Rj available.

• Max: n x m matrix. If Max [i,j] = k, then process Pi may request at
most k instances of resource type Rj.

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently
allocated k instances of Rj.

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k more
instances of Rj to complete its task.
• Need [i,j] = Max[i,j] – Allocation [i,j].

Safety Algorithm:
• Let Work and Finish be vectors of length m and n, respectively.

Initialize:
•Work = Available
• Finish [i] = false for i = 0, 1, …, n- 1.

• Find and i such that both:
• (a) Finish [i] = false
• (b) Needi Work
• If no such i exists, go to step 4.

• Work = Work + Allocationi
Finish[i] = true
go to step 2.

• If Finish [i] == true for all i, then the system is in a safe state.

Resource Request Algorithm
Process Pi

Request = request vector for process Pi. If Requesti[j] = k then process Pi wants k
instances of resource type Rj.

• If Requesti  Needi go to step 2. Otherwise, raise error condition, since process
has exceeded its maximum claim.

• If Requesti  Available, go to step 3. Otherwise Pi must wait, since resources are
not available.

• Pretend to allocate requested resources to Pi by modifying the state as follows:

Available = Available – Request;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

• If safe  the resources are allocated to Pi.

• If unsafe  Pi must wait, and the old resource-allocation state is restored

Deadlock Detection:
• Allow system to enter deadlock state

• Detection algorithm

• Recovery scheme

Single Instance of Each Resource Type:
• Maintain wait-for graph

• Nodes are processes.

• Pi → Pj if Pi is waiting for Pj .

• Periodically invoke an algorithm that searches for a cycle in the graph. If
there is a cycle, there exists a deadlock.

• An algorithm to detect a cycle in a graph requires an order of n2 operations,
where n is the number of vertices in the graph.

Resource Allocation Graph & Wait for Graph

Resource-Allocation Graph Corresponding wait-for graph

Several Instances of a Resource Type

• Available: A vector of length m indicates the number of available
resources of each type.

• Allocation: An n x m matrix defines the number of resources of each
type currently allocated to each process.

• Request: An n x m matrix indicates the current request of each
process. If Request [ij] = k, then process Pi is requesting k more
instances of resource type Rj.

Detection Algorithm
1. Let Work and Finish be vectors of length m and n, respectively Initialize:

(a) Work = Available

For i = 1,2, …, n, if Allocationi  0, then Finish[i] = false; otherwise, Finish[i] = true.

2. Find an index i such that both:

a) Finish[1] == false

b) Requesti Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1  i  n, then the system is in deadlock state.
Moreover, if Finish[i] == false, then Pi is deadlocked.

Algorithm requires an order of O(m x n2) operations to detect whether the system
is in deadlocked state.

DETECTION ALGORITHM USAGE

• When, and how often, to invoke depends on:
✓How often a deadlock is likely to occur?

✓How many processes will need to be rolled back?
o One for each disjoint cycle

• If detection algorithm is invoked arbitrarily, there may be many cycles
in the resource graph and so we would not be able to tell which of
the many deadlocked processes “caused” the deadlock.

Recovery from Deadlock: Process Termination
• Abort all deadlocked processes.

• Abort one process at a time until the deadlock cycle is eliminated.

• In which order should we choose to abort?
✓Priority of the process.

✓How long process has computed, and how much longer to completion.

✓Resources the process has used.

✓Resources process needs to complete.

✓How many processes will need to be terminated.

✓Is process interactive or batch?

Recovery From Deadlock: Resource Pre-emption

• Selecting a victim – minimize cost.

• Rollback – return to some safe state, restart process for that state.

• Starvation – same process may always be picked as victim, include
number of rollback in cost factor.

