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 It is a dimension reduction technique. 

 It is used when in analysis a large number of variables and it 
is not possible to deal with all the variables simultaneously. 

 The factor analysis is of two types: 

1. Exploratory Factor Analysis (EFA) 

2. Confirmatory Factor Analysis (CFA) 

 The EFA is used when the structure of underlying factors is 
unknown and is to be determine. 

 The CFA is used when the structure of underlying factors is 
already known and it is required to check whether the data 
collected confirm that structure or not. 

FACTOR ANALYSIS 



 The main objectives of the EFA are: 

1. To identifying the underlying dimensions or factors that 
explain the variation (or correlations) among the set of 
variables. 

2. To obtain a new smaller set of uncorrelated variables to 
replace the original set of correlated variables in subsequent 
analysis. 

3. To obtain a smaller set of salient variables from a large set 
for use in subsequent analysis. 

EXPLORATORY FACTOR ANALYSIS 



 Both the techniques the Exploratory Factor Analysis (EFA) 
and Principal Component Analysis (PCA) are termed as data 
reduction techniques. But EFA and PCA can’t be seprated 
from each other. PCA can be termed as a method of 
performing the EFA. The PCA is a technique in which we 
obtain the uncorrelated linear combinations of the variables 
under study which are able to explain the variation (or 
correlation) in the dataset, but is unable to answer the 2nd and 
3rd objectives of the EFA i.e. How many factors should be 
retained in the data and which variable should be considered 
within which factor. 

 

EFA VERSUS PRINCIPAL COMPONENT ANALYSIS 



 Factor Analysis is based on a model in which the observed 
vector is partitioned into an unobserved systematic part and 
an unobserved error part. 

 The components of error part are considered as independent 
whereas systematic part is taken as a linear combination of 
relatively small number of unobserved factor variables. 

 This model separates the effect of factors from the error. 
 The model for Factor Analysis is defined as: 

X = μ + Λf + U 
 X is the px1 vector of observed variables. It may be 

considered as the score on a battery of test. 
 μ is (px1) vector of the average score of this test in the 

population. 

MODEL FOR FACTOR ANALYSIS 



 f is (mx1) vector of unobserved variables called as common 
factors. These are the scores on hidden (underlying) ability whose 
linear combinations enters to the test scores. 

 Λ is (pxm) matrix of the component loadings or factor loadings. It 
consists of the coefficients of the linear combinations of factors. 

 U is (px1) vector of random error terms.  

MODEL FOR FACTOR ANALYSIS 



1. The mean of random error term is 0, i.e. E[U] = 0 

2. The mean of common factor is 0, i.e. E[f] = 0 

3. The variance of error term is ψi, i.e. V(ui) = ψi; i=1, 2, …, p. 

4. The error terms are independent of each other, i.e.,  

 Cov(ui, uj) = 0; i≠j=1, 2, …, p 

 The assumption 3 and 4 can be collectively written as: V(U) = Ψ 
= diag[ψ1 ψ2 …ψp]. 

5. The variance of the common factor is given by: V(f) = Φ. 

 If the factors are considered to be orthogonal then V(f) = I. 

6. The common factors and error terms are independent of each 
other, i.e. Cov(ui, fj) = 0; i = 1, 2, …,p & j = 1, 2, …, m. 

ASSUMPTIONS FOR FACTOR ANALYSIS 



ESTIMATION OF PARAMETERS 

 Now consider the variance of X vector: 
V(X) = V(μ+Λf+U) 
or,  Σ = ΛΦΛ’+Ψ 

 If factors are considered to be orthogonal then: Σ = ΛΛ’+Ψ 
 Therefore, in factor analysis there are basically two type of 

parameters involved: 
1. pm parameters in matrix Λ. 
2. m parameters in diagonal matrix Ψ.  
 Therefore there are a total of p(m+1) parameters which are 

required to be estimated. 
 There are several methods for obtaining the estimates of these 

parameters among which two most commonly used methods are: 
1. Principal component method 
2. Method of maximum likelihood. 

 



USING PRINCIPAL COMPONENT METHOD 
 It is discussed in detail in the lecture of Principal component 

Analysis. 

 It has following steps: 

1. First transform the matrix of all variables under 
consideration to a matrix X such that mean of X will be 0. 

2. Obtain the Variance-covariance matrix of X, Σ (or its MLE) 
under the assumption that X is Normally Distributed. 

3. Obtain the Characteristic roots of Σ and arrange them in 
descending order (λ1≥λ2≥…≥λp). 

4. For each distinct Eigen root obtain Eigen vector. 



5. Normalize  these Eigen vectors dividing these by their 
norms (β(1), β(2), …,β(p)). 

6. Then obtain the principal components by multiplying 
these βi’s with X (i.e. β(1)X, β(2)X, …, β(p)X) 

7. In the situation if the unit of measurements for variables 
are not same it is better to use correlation matrix in 
place of variance-covariance matrix. 

 Using these steps the estimates of elements of Λ can be 
obtained. 

 Now for obtaining the estimate of elements of Ψ, we can use: 

Ψ = Σ – ΛΛ’ 

USING PRINCIPAL COMPONENT METHOD 



USING METHOD OF MAXIMUM LIKELIHOOD 
 In this method it is assumed that the vector X have Multivariate 

Normal distribution with mean μ and variance-covariance matrix Σ, 
i.e. X ~ Np(μ, Σ). 

 Let X1, X2, …, Xn be the random sample from above distribution. 
Then the log-likelihood function can be written as: 
 
 

 Putting Σ = ΛΛ’ + Ψ in log-likelihood we get: 
 
 

 However, it is not quite easy to obtain the estimates of Λ and Ψ. 
 A lot of methods can be used to maximize it among which main 

methods are steepest descent method, Newton-Raphson iterative 
procedure and scoring method. 



COMPUTATION OF FACTOR SCORES 

 For obtaining the estimate of factor scores factor (f) analysis 
model is reconsidered: 

X = μ + Λf + U 
 It is fitted in same manner as Linear Regression model. Instead 

of Λ its estimate obtained by above stated method is used and 
model become: 

 For estimating f following methods are used: 
 The estimate of f can be obtained by using: 
1. Ordinary Least Square (OLS Method) 
2. Weighted Least Square (Bartlett’s Method) 
3. Regression Method 



1. OLS Method: 
 In this method the estimates are obtained by minimizing the 

error sum of square (U’U). The estimate of factor score is 
given by: 
 

2. Bartlett’s Method: 
 In OLS method V(U) is considered as identity matrix but in 

factor analysis it is considered as Ψ matrix. Identity matrix 
will be its one special case therefore Bartlett had suggested to 
use the weighted least square method. Using this method the 
estimate of factor score is obtained as: 
 

COMPUTATION OF FACTOR SCORES 



3. Regression Method: 
 In this method the factor scores are obtained by using 

maximum likelihood method. 
 Here the joint distribution of X and f is taken as: 

 
 

 The by using conditional expectation it is obtained that: 
E(f | X) = L’(LL’+Ψ)-1(X – μ) 

 Using the estimates of L and Ψ the estimate of factor scores 
will be: 
 

 Here     is the estimate of μ. 

COMPUTATION OF FACTOR SCORES 



The unrotated output maximizes variance accounted for by the 
first and subsequent factors, and forces the factors to 
be orthogonal. This data-compression comes at the cost of having 
most items load on the early factors, and usually, of having many 
items load substantially on more than one factor. Rotation serves 
to make the output more understandable, by seeking so-called 
“Simple Structure” which is a pattern of loadings where each item 
loads strongly on only one of the factors, and much more weakly 
on the other factors. It is of two types: 

1. Orthogonal rotation 

2. Oblique rotation 

ROTATION OF FACTORS 



 It is a transformational system used in factor analysis in which the 
different underlying or latent variables are required to remain separated 
from or uncorrelated with one another. There are three different methods 
that can be used for Orthogonal rotation: 

1. Varimax rotation: It is an orthogonal rotation of the factor axes to 
maximize the variance of the squared loadings of a factor (column) on all 
the variables (rows) in a factor matrix, which has the effect of 
differentiating the original variables by extracted factor. A varimax 
solution yields results which make it as easy as possible to identify each 
variable with a single factor. This is the most common and most 
frequently used rotation method. 

2. Quartimax rotation: It is an orthogonal alternative which minimizes the 
number of factors needed to explain each variable. This type of rotation 
often generates a general factor on which most variables are loaded to a 
high or medium degree.  

3. Equimax rotation: It is a compromise between Varimax and Quartimax 
criteria. 
 

ORTHOGONAL ROTATION 



 It is a transformational system used in factor 
analysis when two or more factors (i.e., latent variables) 
are correlated. Oblique rotation reorients the factors so 
that they fall closer to clusters of vectors 
representing manifest variables, thereby simplifying the 
mathematical description of the manifest variables. 
There are two methods used for the oblique rotation: 

1. Direct oblimin rotation: 
2. Promax Rotation 
 Promax method is similar to Direct oblimin method but 

is computationally faster than it. 

OBLIQUE ROTATION 



 For performing Exploratory Factor Analysis (EFA) using 
SPSS Following steps are used. 

 Click on Analyze → Dimension Reduction → Factor 

FACTOR ANALYSIS: AN EXAMPLE 
USING SPSS 



EXAMPLE (CONTD.) 
 It will open the factor analysis window put all the variables 

required for EFA in variable box. Then click on Extraction. 



 Click on Descriptive button it will open a new window. In this 
window select coefficients in correlation matrix and KMO and 
Bartlett’s test for sphericity. Click on continue. 

EXAMPLE (CONTD.) 



 On clicking Extraction window will be open. Click on Correlation matrix 
and Scree plot. For number of factors to extracted you can choose any 
option. In this based on Eigen values is selected. By default it take Eigen 
Value > 1 which can be changed. Click on continue. 
 

EXAMPLE (CONTD.) 



 On clicking Rotation a window will be open. Click on Varimax 
rotation as it is most commonly used method (As per requirement 
one can choose any other rotation method. Click on continue. 
 

EXAMPLE (CONTD.) 



 Click on continue, then click on Scores → Save as variable → 
Display factor score coefficient matrix. Click on continue. 

EXAMPLE (CONTD.) 



 Click on Options. It will open a new window. Click on Sorted by 
Size and then on continue. Then click on OK. 

EXAMPLE (CONTD.) 



 The output of SPSS shows a no. of tables. The interpretation of these tables 
is as follows: 

 Table1: Correlation Matrix 
As most of the variables are highly correlated it can be said that Factor 
Analysis is suitable for the data and will give very good results. 

EXAMPLE (CONTD.) 

Correlation Matrix 

  
Price in 

thousands 
Engine size 

Horse 
power 

Wheelbase Width Length 
Curb 

weight 
Fuel 

capacity 
Fuel 

efficiency 
Price in 

thousands 
1.000 0.624 0.841 0.108 0.328 0.155 0.527 0.424 -0.492 

Engine size 0.624 1.000 0.837 0.473 0.692 0.542 0.761 0.667 -0.737 
Horse 
power 

0.841 0.837 1.000 0.282 0.535 0.385 0.611 0.505 -0.616 

Wheelbase 0.108 0.473 0.282 1.000 0.681 0.840 0.651 0.657 -0.497 
Width 0.328 0.692 0.535 0.681 1.000 0.706 0.723 0.663 -0.602 
Length 0.155 0.542 0.385 0.840 0.706 1.000 0.629 0.571 -0.448 
Curb 

weight 
0.527 0.761 0.611 0.651 0.723 0.629 1.000 0.865 -0.820 

Fuel 
capacity 

0.424 0.667 0.505 0.657 0.663 0.571 0.865 1.000 -0.802 

Fuel 
efficiency 

-0.492 -0.737 -0.616 -0.497 -0.602 -0.448 -0.820 -0.802 1.000 



 Table2: It shows the result of KMO and Bartlett’s test. It shows the results 
of two results: 

1. Kaiser-Meyer-Olkin Measure of Sampling Adequacy: It shows the 
proportion of variance in your variables that might be caused by 
underlying factors. Higher value of it indicates the usefulness of the 
analysis. 

2. Bartlett's test of sphericity: It is used to test the null hypothesis that the 
correlation matrix is identity. P-value smaller than 0.05 shows that 
correlation matrix is not Identity and Factor Analysis may be useful. 

 Here the value of KMO measure is 0.843 which shows that FA is useful in 
this case and Bartlett’s test shows that the correlation matrix is not identity. 

EXAMPLE (CONTD.) 

KMO and Bartlett's Test 
Kaiser-Meyer-Olkin Measure of Sampling 
Adequacy. 

0.843 

Bartlett's Test of 
Sphericity 

Approx. Chi-Square 1407.020 
df 36.000 
Sig. <0.001 



 Table3: Communalities: It shows two values Initial and Extraction. 
Initial communalities shows how much percentage of the variation in the 
variable is caused by the other variables. The Extraction communalities 
shows how much percentage of the variation in the variable is caused by 
the factors. 

 

EXAMPLE (CONTD.) 

Communalities 

  Initial Extraction 
Price in 
thousands 1.000 0.853 

Engine size 1.000 0.838 

Horsepower 1.000 0.878 

Wheelbase 1.000 0.868 

Width 1.000 0.745 
Length 1.000 0.797 
Curb weight 1.000 0.854 

Fuel capacity 1.000 0.762 

Fuel efficiency 1.000 0.726 



 Table3: Total Variance Explained: Table is divide into three parts. First 
part shows initial Eigen Values, which indicates how much percent of 
variance can be explained by a particular factor (% of variance) and the 
factor along with previous factors how much percent of variance can be 
explained (cumulative %). Second part shows how many factors are 
extracted from the data or in other words how many factor are sufficient to 
explain the variation in the data. As per rule of thumb the factors having 
Eigen value >1.0 or cumulative % extraction more the 70 % are sufficient 
to explain the data. Third part shows the rotated sum of square loadings, 
which is the result obtained by the rotation of the factor. It distribute the % 
of variance explained by the factors approximately equal to each factor. 

 In our results the Eigen values for first two factors are more than 1.0 and it 
can explain 81% of total variation in the data. Therefore these two factor 
can be considered sufficient for the data. In initial solution first factor 
explain 64% whereas second factor explain 17% of the total variation, 
however in rotated solution first factor explains the 43% and second factor 
38% of the total variation. 

EXAMPLE (CONTD.) 



Total Variance Explained 

Component 
Initial Eigenvalues 

Extraction Sums of Squared 
Loadings 

Rotation Sums of Squared 
Loadings 

Total 
% of 

Variance 
Cumulative 

% 
Total 

% of 
Variance 

Cumulative 
% 

Total 
% of 

Variance 
Cumulative 

% 

1 5.804 64.490 64.490 5.804 64.490 64.490 3.911 43.457 43.457 

2 1.517 16.860 81.349 1.517 16.860 81.349 3.410 37.892 81.349 

3 0.623 6.918 88.267             

4 0.338 3.757 92.025             

5 0.247 2.747 94.772             

6 0.155 1.719 96.491             

7 0.139 1.547 98.038             

8 0.114 1.266 99.305             

9 0.063 0.695 100.000             

EXAMPLE (CONTD.) 



 Scree Plot: It is another method to obtain the required number of factors. In 
this the Eigen value is plotted against the number of factor. The point after 
which the curve become parallel to the horizontal axis will be the last factor 
selected. In the given example after 2nd factor curve become parallel to the 
horizontal axis therefore only two factors are retained. 

EXAMPLE (CONTD.) 



 Table 4: Component Matrix: This table shows the correlation 
of the factor with the variables under consideration. It is helpful 
in the detection of the structure of the factor. A variable is said 
to be contained in a factor if the correlation of the variable with 
the factor is maximum among all the factors. In the example 8 
out of 9 variables are highly correlated to 1st factor as compared 
to second factor therefore these 8 variables (Curb weight, 
Engine size, Fuel capacity, Fuel efficiency, Width, Horsepower, 
Length, Wheelbase, Price in thousands) are said to be contained 
in 1st factor whereas 9th one (price in thousand) is said to be 
contained in 2nd factor however the correlation of 9th variable 
with both the factors are approximately similar and it may be 
contained in any of the factors. It is drawback of the component 
matrix and therefore the rotated component matrix is used.  

EXAMPLE (CONTD.) 



EXAMPLE (CONTD.) 
Component Matrix Rotated Component Matrix 

  
Component 

  
Component 

1 2 1 2 

Curb weight 0.923 0.039 Wheelbase 0.931 0.040 

Engine size 0.882 -0.243 Length 0.887 0.104 

Fuel capacity 0.865 0.119 Width 0.779 0.371 

Fuel 
efficiency 

-0.845 0.106 Fuel capacity 0.725 0.486 

Width 0.829 0.241 Curb weight 0.716 0.585 

Horse power 0.771 -0.533 
Price in 
thousands 

-0.005 0.924 

Length 0.732 0.512 Horse power 0.221 0.911 

Wheelbase 0.722 0.588 Engine size 0.498 0.768 

Price in 
thousands 

0.610 -0.694 
Fuel 
efficiency 

-0.562 -0.641 



EXAMPLE (CONTD.) 
 Table 5: Rotated Component Matrix: This table shows the 

correlation of the factors retained with the variables after 
applying Varimax rotation. It is helpful in the detection of the 
structure of the factor. A variable is said to be contained in a 
factor if the correlation of the variable with the factor is 
maximum among all the factors. In the example 5 variables 
(Wheelbase, Length, Width, Fuel capacity, Curb weight) are 
highly correlated to 1st factor and are said to be contained in 1st 
factor. Other 4 variables (Price in thousands, Horsepower, 
Engine size, Fuel efficiency) are highly correlated to the 2nd 
factor as compared to first factor and are said to be contained in 
2nd factor.  



 Table 6: Component Score Coefficient Matrix: This matrix 
shows the coefficients of the variable in the factor structure. It 
is used to obtain the value of factor for different set of 
observations (or individuals) under consideration. These values 
are used for further calculation. For our data these coefficients 
are computed by using Regression method. 

EXAMPLE (CONTD.) 
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