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PRINCIPAL COMPONENT ANALYSIS 
 It is a dimension reduction technique. 

 In some situations the  measurements are taken over a 
large number of variables. 

 But it is not possible to deal with a large number of 
variables. 

 Therefore instead of these large number of variables 
their linear combinations, which are linearly independent 
and orthonormal also, are used which can explain 
maximum possible variation in the data. 

 These linear combinations are called as principal 
components. 



 Transforming the original vector variable to the vector of 
principal components amounts to a rotation of coordinate 
axes to a new coordinate system that has inherent 
statistical properties. 

 The set of principal components yields a convenient set 
of coordinates, and the accompanying variances of the 
components characterize their statistical properties.  

 The method of principal components is used to find the 
linear combinations with large variance. 
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 Let X be a random vector of p variables having variance-
covariance matrix Σ. Without loss of generality the mean 
vector of X can be taken as 0. 

 The main objective of Principal Component Analysis is 
to obtain the linear combinations of X vector in a manner 
that the variance of the combination is maximum. 

 Let the linear combination of X is β’X. 
 Then V(β’X) = β’Σβ.    (1) 
 As these linear combinations are orthonormal we will 

maximize this variance under the condition β’ β = 1. 
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 For the purpose we define the function: 
 φ = β’Σβ – λ(β’ β – 1) 
 Where λ is Lagrange’s multiplier (a scalar quantity). 
 For maximum variance: 
 It will give the equation: Σβ – λβ = 0  
 or   (Σ – λI)β = 0    (2) 
 This equation will have a solution if (Σ – λI) will be 

singular i.e. |Σ – λI| = 0.    (3) 
 In other words we can say that λ is the characteristic root 

of Σ and β be the characteristic vector of Σ. 
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 Also from equation (1), we get: β’Σβ’ = λβ’ β = λ. 
 Let λ1≥ λ2≥…≥ λp be the characteristic vectors of the matrix Σ. 
 As the Linear combination must have maximum variance we 

take λ = λ1 and β(1) be the characteristic vector associated with it. 
 Therefore first principal component for X matrix is given by 

U1= β(1)’X where β(1) is the characteristic vector associated with 
the maximum characteristic root λ1 of Σ. 

 Let us consider another principal component β’X of X which 
have maximum variance (lower than U1) and is uncorrelated with 
β(1)’X. 

 Then we would have: 
 V(β’X) = β’Σβ; Cov(β’X, β(1)’X) = β’Σβ(1) = 0; β’ β = 1 (4) 

 Now for obtaining the second principal component we 
maximize β’Σβ under the conditions β’ β = 1 and β’Σβ(1) = 0. 
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 Now we define a function: 
 φ1 = β’Σβ – λ(β’ β – 1) – 2νβ’Σβ(1)  

 Where λ and ν are the Lagrange’s multipliers (Scalars). 
 On maximizing the φ with respect to β’ we get: 
  2Σβ – 2λβ – 2νΣβ(1) = 0    (5) 
 Pre-multiplying it by β(1)’ we get 
 2 β(1)’Σβ – 2λ β (1)’β – 2ν β (1)’Σβ(1) = 0 
 or –2νλ = 0 
 As λ can’t be we get ν = 0. putting it in (5) we get (Σ–λI)β = 0. 
 Which again show that β is the characteristic vector of matrix Σ 

and λ is its Eigen root. 
 We can define this principal component as U2=β(2)’X, where β(2) 

is the solution of equation (2) for the λ = λ2. 
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 Proceeding in same manner at (k+1)th stage we get following 
conditions: 

 V(β’X)=β’Σβ     (6)  
 β’ β = 1      (7) 
        (8) 
 Proceeding in same manner and using Lagrange’s multipier we 

can define the function φ(k+1) as: 
 
        (9) 
 On maximizing the equation (9) with respect to β’ we again get 

that β is the characteristic vector of the matrix Σ corresponding 
to (k+1)th largest characteristic root (λ(k+1))of it. 

 Also the variance of the (k+1)th principal component is λ(k+1). 
 V(β(k+1)’X) = β(k+1)’Σ β(k+1) = λ(k+1)β

(k+1)’ β(k+1)=λ(k+1) 
 by using equations (1) and (2). 
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 In matrix form we can define: 
  
 
β = (β(1) β(2) … β(p))’ and 
 
 
 
 Then we can define principal components as: 

“ Let X be a p-component random vector having mean 0 and 
variance-covariance matrix Σ. Then there exist an orthogonal 
linear transformation U=β’X such that the covariance matrix of 
U is Λ, where λ1 ≥ λ2 ≥ … ≥λp are the roots of equation (3). The 
kth column of β, β(k) satisfies the equation (2). The kth 
component of U, Uk= β(k)X has maximum variance of all 
normalized linear combinations uncorrelated with U1, U2,…, 
U(k-1).” 
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 In general situation the variance-covariance matrix Σ is 
unknown. Therefore for obtaining the principal 
components its MLE is used and thus obtained principal 
components are called as MLE of principal components. 

 As we know that for a square matrix of order m there 
will be at most m characteristic roots.  Therefore for a p 
component matrix X one can obtain at most p-principal 
components. 

 



STEPS FOR PRINCIPAL COMPONENT 
ANALYSIS: 
1. First transform the matrix of all variables under consideration 

to a matrix X such that mean of X will be 0. 
2. Obtain the Variance-covariance matrix of X, Σ (or its MLE) 

under the assumption that X is Normally Distributed. 
3. Obtain the Characteristic roots of Σ and arrange them in 

descending order (λ1≥λ2≥…≥λp). 
4. For each distinct Eigen root obtain Eigen vector. 
5. Normalize  these Eigen vectors dividing these by their norms 

(β(1), β(2), …,β(p)). 
6. Then obtain the principal components by multiplying these βi’s 

with X (i.e. β(1)X, β(2)X, …, β(p)X) 
7. In the situation if the unit of measurements for variables are 

not same it is better to use correlation matix in place of 
variance-covariance matrix. 



 For performing Principal Component Analysis (PCA) 
using SPSS Following steps are used. 

 Click on Analyze → Dimension Reduction → Factor 
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AN EXAMPLE USING SPSS 



EXAMPLE (CONTD.) 
 It will open the factor analysis window put all the variables 

required for PCA in variable box. Then click on Extraction. 



 On clicking Extraction window will be open. Click on 
Correlation matrix and then fixed number of factors put the 
number of variables in the analysis in the box shown. 
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 Click on continue then click on Scores → Save as variable → 
Display factor score coefficient matrix. 
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 On applying the PCA using SPSS five tables are generated out 
of which three are important for explaining PCA. 

 Table – 1: Toatl Variance Explained 

 

 

 

 

 

 

EXAMPLE (CONTD.) 

Component 

 
Eigen 
Value 

% of 
Variance 

Cumulati
ve % 

Component 
Eigen 
Value 

% of 
Variance 

Cumulati
ve % 

1 5.804 64.490 64.490 6 0.155 1.719 96.491 

2 1.517 16.860 81.349 7 0.139 1.547 98.038 

3 0.623 6.918 88.267 8 0.114 1.266 99.305 

4 0.338 3.757 92.025 9 0.063 0.695 100.000 

5 0.247 2.747 94.772 



 This table shows that nine principal components are generated 
against the 9 variables. Second column represents the Eigen 
value of correlation matrix. Third and fourth column shows the 
Percentage of  variance and cumulative percentage of variance 
explained by these components. 

 As we know that Eigen values are arranged in the descending 
order. In this example we can see that this process is followed. 
For first component the Eigen value is 5.804 which is largest 
among all the Eigen value. It also shows that the variance of 
first principal component is 5.804. The % of variance is 64.490 
which is also equal to cumulative %. It shows that first 
principal component explain the 64.490% of total variation in 
the data. For second component cumulative % is 81.439, which 
shows that both, first and second component collectively 
explain the 81.439% of total variation in the data. 
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 Table 2: Component Score Coefficient Matrix 

EXAMPLE (CONTD.) 

  1 2 3 4 5 6 7 8 9 

Price in 
thousands 

0.105 -0.457 0.233 0.822 0.713 -0.399 -0.226 0.153 -1.773 

Engine size 0.152 -0.160 0.183 -0.665 -0.838 1.068 0.742 0.779 -1.603 

Horsepower 0.133 -0.351 0.435 -0.022 -0.370 -0.233 0.396 -0.660 2.765 

Wheelbase 0.124 0.388 0.183 0.655 -0.110 -0.811 1.385 1.115 0.200 

Width 0.143 0.159 0.282 -1.026 1.260 -0.510 -0.031 -0.181 -0.143 

Length 0.126 0.337 0.545 0.351 -0.552 0.279 -1.344 -1.120 -0.652 

Curb weight 0.159 0.025 -0.353 0.190 0.304 0.819 -1.261 1.616 1.367 

Fuel capacity 0.149 0.078 -0.605 0.337 0.418 0.989 0.915 -1.578 -0.010 

Fuel efficiency -.0146 0.070 0.654 0.289 0.725 1.570 0.522 0.278 0.517 



 The Second table shows the coefficients for each variable in the 
corresponding principal components.  

 It actually represents the Eigen vectors for the correlation 
matrix of variables. 

 First Principal component can be written as: 

U1 = 0.105(Price in Thousand) + 0.152(Engine Size) + 
0.133(Horse Power) + 0.124(Wheel Base) + 0.143 
(Width) + 0.126(Length) + 0.159(Curb Weight) + 
0.149(Fuel Capacity) + (-0.146)(Fuel Efficiency) 

 In the same manner other Principal components can be written. 
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 Table 3: Component score coefficient matrix. 

 

 

 

 

 

 

 

 

 This table shows that all the principal components are linearly 
independent of each other and are normalized. 

EXAMPLE (CONTD.) 

Component 1 2 3 4 5 6 7 8 9 

1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

3 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 

4 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 

5 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

6 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

7 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
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