
CS 373 Non-Lecture B: Fibonacci Heaps Fall 2002

B Fibonacci Heaps

B.1 Mergeable Heaps

A mergeable heap is a data structure that stores a collection of keys 1 and supports the following
operations.

• Insert: Insert a new key into a heap. This operation can also be used to create a new heap
containing just one key.

• FindMin: Return the smallest key in a heap.

• DeleteMin: Remove the smallest key from a heap.

• Merge: Merge two heaps into one. The new heap contains all the keys that used to be in
the old heaps, and the old heaps are (possibly) destroyed.

If we never had to use DeleteMin, mergeable heaps would be completely trivial. Each “heap”
just stores to maintain the single record (if any) with the smallest key. Inserts and Merges
require only one comparison to decide which record to keep, so they take constant time. FindMin

obviously takes constant time as well.
If we need DeleteMin, but we don’t care how long it takes, we can still implement mergeable

heaps so that Inserts, Merges, and FindMins take constant time. We store the records in a
circular doubly-linked list, and keep a pointer to the minimum key. Now deleting the minimum
key takes Θ(n) time, since we have to scan the linked list to find the new smallest key.

In this lecture, I’ll describe a data structure called a Fibonacci heap that supports Inserts,
Merges, and FindMins in constant time, even in the worst case, and also handles DeleteMin in
O(log n) amortized time. That means that any sequence of n Inserts, m Merges, f FindMins,
and d DeleteMins takes O(n + m + f + d log n) time.

B.2 Binomial Trees and Fibonacci Heaps

A Fibonacci heap is a circular doubly linked list, with a pointer to the minimum key, but the
elements of the list are not single keys. Instead, we collect keys together into structures called
binomial heaps. Binomial heaps are trees2 that satisfy the heap property — every node has a
smaller key than its children — and have the following special structure.

B
4

B4

5B

Binomial trees of order 0 through 5.

1In the earlier lecture on treaps, I called these keys priorities to distinguish them from search keys.
2CLR uses the name ‘binomial heap’ to describe a more complicated data structure consisting of a set of heap-

ordered binomial trees, with at most one binomial tree of each order.

1

CS 373 Non-Lecture B: Fibonacci Heaps Fall 2002

A kth order binomial tree, which I’ll abbreviate Bk, is defined recursively. B0 is a single node.
For all k > 0, Bk consists of two copies of Bk−1 that have been linked together, meaning that the
root of one Bk−1 has become a new child of the other root.

Binomial trees have several useful properties, which are easy to prove by induction (hint, hint).

• The root of Bk has degree k.

• The children of the root of Bk are the roots of B0, B1, . . . , Bk−1.

• Bk has height k.

• Bk has 2k nodes.

• Bk can be obtained from Bk−1 by adding a new child to every node.

• Bk has
(

k
d

)

nodes at depth d, for all 0 ≤ d ≤ k.

• Bk has 2k−h−1 nodes with height h, for all 0 ≤ h < k, and one node (the root) with height k.

Although we normally don’t care in this class about the low-level details of data structures, we
need to be specific about how Fibonacci heaps are actually implemented, so that we can be sure
that certain operations can be performed quickly. Every node in a Fibonacci heap points to four
other nodes: its parent, its ‘next’ sibling, its ‘previous’ sibling, and one of its children. The sibling
pointers are used to join the roots together into a circular doubly-linked root list. In each binomial
tree, the children of each node are also joined into a circular doubly-linked list using the sibling
pointers.

min
min

A high-level view and a detailed view of the same Fibonacci heap. Null pointers are omitted for clarity.

With this representation, we can add or remove nodes from the root list, merge two root lists
together, link one two binomial tree to another, or merge a node’s list of children with the root list,
in constant time, and we can visit every node in the root list in constant time per node. Having
established that these primitive operations can be performed quickly, we never again need to think
about the low-level representation details.

B.3 Operations on Fibonacci Heaps

The Insert, Merge, and FindMin algorithms for Fibonacci heaps are exactly like the correspond-
ing algorithms for linked lists. Since we maintain a pointer to the minimum key, FindMin is trivial.
To insert a new key, we add a single node (which we should think of as a B0) to the root list and (if
necessary) update the pointer to the minimum key. To merge two Fibonacci heaps, we just merge
the two root lists and keep the pointer to the smaller of the two minimum keys. Clearly, all three
operations take O(1) time.

2

CS 373 Non-Lecture B: Fibonacci Heaps Fall 2002

Deleting the minimum key is a little more complicated. First, we remove the minimum key
from the root list and splice its children into the root list. Except for updating the parent pointers,
this takes O(1) time. Then we scan through the root list to find the new smallest key and update
the parent pointers of the new roots. This scan could take Θ(n) time in the worst case. To bring
down the amortized deletion time, we apply a Cleanup algorithm, which links pairs of equal-size
binomial heaps until there is only one binomial heap of any particular size.

Let me describe the Cleanup algorithm in more detail, so we can analyze its running time.
The following algorithm maintains a global array B[1 .. blg nc], where B[i] is a pointer to some
previously-visited binomial heap of order i, or Null if there is no such binomial heap. Notice that
Cleanup simultaneously resets the parent pointers of all the new roots and updates the pointer to
the minimum key. I’ve split off the part of the algorithm that merges binomial heaps of the same
order into a separate subroutine MergeDupes.

Cleanup:

newmin ← some node in the root list
for i← 0 to blg nc

B[i]← Null

for all nodes v in the root list
parent (v)← Null (?)
if key(newmin) > key(v)

newmin ← v
MergeDupes(v)

MergeDupes(v):

w ← B[deg(v)]
while w 6= Null

B[deg(v)]← Null

if key(v) ≤ key(w)
swap v � w

remove w from the root list (??)
link w to v
w ← B[deg(v)]

B[deg(v)]← v

B
0 1 2 3

v B
0 1 2 3

v B
0 1 2 3

v

MergeDupes(v), ensuring that no earlier root has the same degree as v.

Notices that MergeDupes is careful to merge heaps so that the heap property is maintained—
the heap whose root has the larger key becomes a new child of the heap whose root has the smaller
key. This is handled by swapping v and w if their keys are in the wrong order.

The running time of Cleanup is O(r′), where r′ is the length of the root list just before
Cleanup is called. The easiest way to see this is to count the number of times the two starred lines
can be executed: line (?) is executed once for every node v on the root list, and line (??) is executed
at most once for every node w on the root list. Since DeleteMin does only a constant amount

of work before calling Cleanup, the running time of DeleteMin is O(r ′) = O(r + deg(min))

where r is the number of roots before DeleteMin begins, and min is the node deleted.
Although deg(min) is at most lg n, we can still have r = Θ(n) (for example, if nothing has been

deleted yet), so the worst-case time for a DeleteMin is Θ(n). After a DeleteMin, the root list
has length O(log n), since all the binomial heaps have unique orders and the largest has order at
most blg nc.

B.4 Amortized Analysis of DeleteMin

To bound the amortized cost, observe that each insertion increments r. If we charge a constant
‘cleanup tax’ for each insertion, and use the collected tax to pay for the Cleanup algorithm, the

3

CS 373 Non-Lecture B: Fibonacci Heaps Fall 2002

unpaid cost of a DeleteMin is only O(deg(min)) = O(log n).
More formally, define the potential of the Fibonacci heap to be the number of roots. Recall

that the amortized time of an operation can be defined as its actual running time plus the increase
in potential, provided the potential is initially zero (it is) and we never have negative potential
(we never do). Let r be the number of roots before a DeleteMin, and let r ′′ denote the number
of roots afterwards. The actual cost of DeleteMin is r + deg(min), and the number of roots
increases by r′′ − r, so the amortized cost is r′′ + deg(min). Since r′′ = O(log n) and the degree of

any node is O(log n), the amortized cost of DeleteMin is O(log n).

Each Insert adds only one root, so its amortized cost is still constant. A Merge actually
doesn’t change the number of roots, since the new Fibonacci heap has all the roots from its con-
stituents and no others, so its amortized cost is also constant.

B.5 Decreasing Keys

In some applications of heaps, we also need the ability to delete an arbitrary node. The usual way
to do this is to decrease the node’s key to −∞, and then use DeleteMin. Here I’ll describe how
to decrease the key of a node in a Fibonacci heap; the algorithm will take O(log n) time in the
worst case, but the amortized time will be only O(1).

Our algorithm for decreasing the key at a node v follows two simple rules.

1. Promote v up to the root list. (This moves the whole subtree rooted at v.)

2. As soon as two children of any node w have been promoted, immediately promote w.

In order to enforce the second rule, we now mark certain nodes in the Fibonacci heap. Specifically,
a node is marked if exactly one of its children has been promoted. If some child of a marked node
is promoted, we promote (and unmark) that node as well. Whenever we promote a marked node,
we unmark it; this is theonly way to unmark a node. (Specifically, splicing nodes into the root list
during a DeleteMin is not considered a promotion.)

Here’s a more formal description of the algorithm. The input is a pointer to a node v and the
new value k for its key.

DecreaseKey(v, k):

key(v)← k
update the pointer to the smallest key
Promote(v)

Promote(v):

unmark v
if parent (v) 6= Null

remove v from parent (v)’s list of children
insert v into the root list
if parent (v) is marked

Promote(parent (v))
else

mark parent(v)

The Promote algorithm calls itself recursively, resulting in a ‘cascading promotion’. Each
consecutive marked ancestor of v is promoted to the root list and unmarked, otherwise unchanged.
The lowest unmarked ancestor is then marked, since one of its children has been promoted.

4

CS 373 Non-Lecture B: Fibonacci Heaps Fall 2002

a

b c d e

f g h i j k

l m n o

p

a

b c d e

f

g h i j k

l m

n o

p

a

b c

d

e

f

g h i j

kl m

n o

p

d

k

j

c

i

o

b

g h

n

a

e

f

l m

p

f

l m

p

d

k

j

c

i

o

a

e

hb

g

n

Decreasing the keys of four nodes: first f , then d, then j, and finally h. Dark nodes are marked.

DecreaseKey(h) causes nodes b and a to be recursively promoted.

The time to decrease the key of a node v is O(1+#consecutive marked ancestors of v). Binomial
heaps have logarithmic depth, so if we still had only full binomial heaps, the running time would
be O(log n). Unfortunately, promoting nodes destroys the nice binomial tree structure; our trees

no longer have logarithmic depth! In fact, DecreaseKey runs in Θ(n) time in the worst case.

To compute the amortized cost of DecreaseKey, we’ll use the potential method, just as we
did for DeleteMin. We need to find a potential function Φ that goes up a little whenever we do
a little work, and goes down a lot whenever we do a lot of work. DecreaseKey unmarks several
marked ancestors and possibly also marks one node. So the number of marked nodes might be an
appropriate potential function here. Whenever we do a little bit of work, the number of marks goes
up by at most one; whenever we do a lot of work, the number of marks goes down a lot.

More precisely, let m and m′ be the number of marked nodes before and after a DecreaseKey

operation. The actual time (ignoring constant factors) is

t = 1 + #consecutive marked ancestors of v

and if we set Φ = m, the increase in potential is

m′ −m ≤ 1−#consecutive marked ancestors of v.

Since t + ∆Φ ≤ 2, the amortized cost of DecreaseKey is O(1) .

B.6 Bounding the Degree

But now we have a problem with our earlier analysis of DeleteMin. The amortized time for a
DeleteMin is still O(r+deg(min)). To show that this equaled O(log n), we used the fact that the
maximum degree of any node is O(log n), which implies that after a Cleanup the number of roots
is O(log n). But now that we don’t have complete binomial heaps, this ‘fact’ is no longer obvious!

So let’s prove it. For any node v, let |v| denote the number of nodes in the subtree of v,
including v itself. Our proof uses the following lemma, which finally tells us why these things are
called Fibonacci heaps.

Lemma 1. For any node v in a Fibonacci heap, |v| ≥ Fdeg(v)+2.

Proof: Label the children of v in the chronological order in which they were linked to v. Consider
the situation just before the ith oldest child wi was linked to v. At that time, v had at least i− 1
children (possibly more). Since Cleanup only links trees with the same degree, we had deg(wi) =

5

CS 373 Non-Lecture B: Fibonacci Heaps Fall 2002

deg(v) ≥ i − 1. Since that time, at most one child of wi has been promoted away; otherwise, wi

would have been promoted to the root list by now. So currently we have deg(wi) ≥ i− 2.
We also quickly observe that deg(wi) ≥ 0. (Duh.)
Let sd be the minimum possible size of a tree with degree d in any Fibonacci heap. Clearly

s0 = 1; for notational convenience, let s−1 = 1 also. By our earlier argument, the ith oldest child
of the root has degree at least max{0, i− 2}, and thus has size at least max{1, si−2} = si−2. Thus,
we have the following recurrence:

sd ≥ 1 +

d
∑

i=1

si−2

If we assume inductively that si ≥ Fi+2 for all −1 ≤ i < d (with the easy base cases s−1 = F1 and
s0 = F2), we have

sd ≥ 1 +

d
∑

i=1

Fi = Fd+2.

(The last step was a practice problem in Homework 0.) By definition, |v| ≥ sdeg(v). �

You can easily show (using either induction or the annihilator method) that Fk+2 > φk where

φ = 1+
√

5
2 ≈ 1.618 is the golden ratio. Thus, Lemma 1 implies that

deg(v) ≤ logφ|v| = O(log|v|).

Thus, since the size of any subtree in an n-node Fibonacci heap is obviously at most n, the degree
of any node is O(log n), which is exactly what we wanted. Our earlier analysis is still good.

B.7 Analyzing Everything Together

Unfortunately, our analyses of DeleteMin and DecreaseKey used two different potential func-
tions. Unless we can find a single potential function that works for both operations, we can’t claim
both amortized time bounds simultaneously. So we need to find a potential function Φ that goes
up a little during a cheap DeleteMin or a cheap DecreaseKey, and goes down a lot during an
expensive DeleteMin or an expensive DecreaseKey.

Let’s look a little more carefully at the cost of each Fibonacci heap operation, and its effect
on both the number of roots and the number of marked nodes, the things we used as out earlier
potential functions. Let r and m be the numbers of roots and marks before each operation, and
let r′ and m′ be the numbers of roots and marks after the operation.

operation actual cost r′ − r m′ −m

Insert 1 1 0
Merge 1 0 0

DeleteMin r + deg(min) r′ − r 0
DecreaseKey 1 + m−m′ 1 + m−m′ m′ −m

In particular, notice that promoting a node in DecreaseKey requires constant time and increases
the number of roots by one, and that we promote (at most) one unmarked node.

If we guess that the correct potential function is a linear combination of our old potential
functions r and m and play around with various possibilities for the coefficients, we will eventually
stumble across the correct answer:

Φ = r + 2m

6

CS 373 Non-Lecture B: Fibonacci Heaps Fall 2002

To see that this potential function gives us good amortized bounds for every Fibonacci heap oper-
ation, let’s add two more columns to our table.

operation actual cost r′ − r m′ −m Φ′ − Φ amortized cost

Insert 1 1 0 1 2
Merge 1 0 0 0 1

DeleteMin r + deg(min) r′ − r 0 r′ − r r′ + deg(min)
DecreaseKey 1 + m−m′ 1 + m−m′ m′ −m 1 + m′ −m 2

Since Lemma 1 implies that r′ + deg(min) = O(log n), we’re finally done! (Whew!)

B.8 Fibonacci Trees

To give you a little more intuition about how Fibonacci heaps behave, let’s look at a worst-case
construction for Lemma 1. Suppose we want to remove as many nodes as possible from a binomial
heap of order k, by promoting various nodes to the root list, but without causing any cascading
promotions. The most damage we can do is to promote the largest subtree of every node. Call the
result a Fibonacci tree of order k + 1, and denote it fk+1. As a base case, let f1 be the tree with
one (unmarked) node, that is, f1 = B0. The reason for shifting the index should be obvious after
a few seconds.

Fibonacci trees of order 1 through 6. Light nodes have been promoted away; dark nodes are marked.

Recall that the root of a binomial tree Bk has k children, which are roots of B0, B1, . . . , Bk−1.
To convert Bk to fk+1, we promote the root of Bk−1, and recursively convert each of the other
subtrees Bi to fi+1. The root of the resulting tree fk+1 has degree k − 1, and the children are the
roots of smaller Fibonacci trees f1, f2, . . . , fk−1. We can also consider Bk as two copies of Bk−1

linked together. It’s quite easy to show that an order-k Fibonacci tree consists of an order k − 2
Fibonacci tree linked to an order k − 1 Fibonacci tree. (See the picture below.)

5

f
f

f
f

f7

4
3

f2 1

f

f
f

5

7

6

B0B1B2B3B4B5

B6

B5

B6

B5

Comparing the recursive structures of B6 and f7.

Since f1 and f2 both have exactly one node, the number of nodes in an order-k Fibonacci tree
is exactly the kth Fibonacci number! (That’s why we changed in the index.) Like binomial trees,
Fibonacci trees have lots of other nice properties that easy to prove by induction (hint, hint):

• The root of fk has degree k − 2.

• fk can be obtained from fk−1 by adding a new unmarked child to every marked node and
then marking all the old unmarked nodes.

7

CS 373 Non-Lecture B: Fibonacci Heaps Fall 2002

• fk has height dk/2e − 1.

• fk has Fk−2 unmarked nodes, Fk−1 marked nodes, and thus Fk nodes altogether.

• fk has
(

k−d−2
d−1

)

unmarked nodes,
(

k−d−2
d

)

marked nodes, and
(

k−d−1
d

)

total nodes at depth d,
for all 0 ≤ d ≤ bk/2c − 1.

• fk has Fk−2h−1 nodes with height h, for all 0 ≤ h ≤ bk/2c − 1, and one node (the root) with
height dk/2e − 1.

8

