
GRAPH SEARCH
 Breadth first Search

 Depth first Search

Usage

 Transportation networks (airline carrier, airports as node and direct flights
as edges (direct edge).

 Communication networks (a collection of computers as nodes and the
physical link between them as edges).

 Information networks (World Wide Web can be viewed as directed graph,
the Web pages are nodes and the hyperlink between the pages are directed
edges).

 Social Network (People are nodes and friendship is an edge).

Breadth first Search(level order traversal): BFS begins at a root node and
inspects all the neighboring nodes. Then for each of those neighbor nodes in turn,
it inspects their neighbor nodes which were unvisited, and so on

Example:

A

B

C

F

D E

G
H

A

B

C

F

G
H

D E

D E

For implementation of BFS we

use queue as a data structure

Q {A}

Delete from queue vertex {A}

& add their adjacent not

visited vertices one bye one to

the queue.

Print{}

A

B

C

F

G
H

A

B

C

F

G
H

D E

A

B

C

F

G
H

D E

D E

A

B

C

F

G
H

D E

Q {B}

Print{A}

Q {B,C}

Print{A}

Q {B,C}

Delete vertex {B} & add not

visited adjacent vertices of B to

queue

Print{A}

Q {C}

Delete vertex {C} & add not

visited adjacent vertices of C to

queue one bye one

Print{A, B}

A

B

C

F

G
H

A

B

C

F

G
H

D E

A

B

C

F

G
H

D E

A

B

C

F

G
H

D E

Q {F}

Print{A, B,C}

Q {F,G}

Print{A, B,C}

Q {F,G}

Delete vertex {F} & add not

visited adjacent vertices of F to

queue one bye one

Print{A, B,C}

Q {G,D}

Print{A, B,C,F}

A

B

C

F

G
H

D E

A

B

C

F

G
H

D E

A

B

C

F

G
H

D E

A

B

C

F

G
H

D E

B
D E

Q {G,D}

Delete vertex {G} & add not

visited adjacent vertices of G to

queue one bye one

Print{A, B,C,F}

Q {D,H}

Print{A, B,C,F,G}

Q {D,H}

Delete vertex {D} & add not

visited adjacent vertices of D to

queue one bye one

Print{A, B,C,F,G}

Q {H,E}

Print{A, B,C,F,G,D}

Q {E}

Delete vertex {H} & add not

visited adjacent vertices of H to

queue one bye one

Print{A, B,C,F,G,D,H}

Tree after BFS run

Breadth first Search Algorithm BFS Running time

BFS(V)

{

 Visited (v)=1;

 Add(v, Q); // add visited vertex to queue

 While(Q is not empty)// while loop is executing V

times

 {

x= delete(Q);

print (x);

For all w adjacent to x

{

If(w is not visited)

{ visited(w) =1;

 Add (w, Q);

}

}

 }

}

A

C

F

G
H

A

B

C

F

G
H

D E
Q {}

Delete vertex {E} & add not

visited adjacent vertices of E to

queue one bye one

Print{A, B,C,F,G,D,H,E}

Q is empty and we have

traverse all the vertices in

order { A, B,C,F,G,D,H,E }

A

D

GF

CB

E

H

1) If we represent the graph G by
adjacency matrix then the
running time of BFS
algorithm is O(V2) because for
find adjacent vertices of a
particular vertex in adjacency
matrix we require V time and
for all the vertices running
time will be V2 , where V is the
number of nodes.

2) If we represent the graph G by
link lists then the running time
of BFS algorithm is O(E + V),
where E is the number of
edges and V is the number of
nodes.

BFS Applications
Breadth-first search can be used to solve many problems in graph theory, for
example:

 Finding all nodes within one connected component
 Finding the shortest path between two nodes u and v
 Finding the diameter of a graph.
 To obtain number of connected component we use BFS
 If in the uniform weighted graphs (all edges weight are same) to find out

shortest path from source we can use BFT.
 Testing a graph for bipartiteness. If there are two vertices x,y in the same

level (layer) L_i that are adjacent then the graph is not bipartite.

Depth-First Search (DFS)

We don’t visit the nodes level by level. As long as there is an unvisited node
adjacent to the current visited node we continue. Once we are stuck, trace back
and go to a different branch.DFS use stack as data structure.

Depth-First Search Algorithm DFS Running time

Example:

A

B

C

F

D E

G
H

A

B

C

F

G
H

D E

D E

DFS(V)

{

 Visited (v)=1;

 Print(v);

 For all w adjacent to v {

If(w is not visited)

{

 DFS(w);

}

 }

}

3) If we represent the graph G by
adjacency matrix then the
running time of DFS
algorithm is O(V2) because for
find adjacent vertices of a
particular vertex in adjacency
matrix we require V time and
for all the vertices running
time will be V2 , where V is the
number of nodes.

4) If we represent the graph G by
link lists then the running time
of DFS algorithm is O(E + V),
where E is the number of
edges and V is the number of
nodes.

A

B

C

F

G
H

A

B

C

F

G
H

A

B

C

F

G
H

A

B

C

F

G
H

D E

D E

D E

D E

DFS{A,B,C,F,D,E,H,G}

Edges of Graph G that are not in DFS –{C-G, D-G}

Tree after DFS run

DFS Applications

A

B

C

F

G
H

A

B

C

F

G
H

D E

E

F

CB

H

D

A

G

 We use DFS to find a cycle or shortest cycle.
 We also use DFS to find strong components in digraph.
 Check whether graph is connected or not.
 Finding the number of connected component.
 Find articulation point in a graph. In the given connected graph by deleting

any vertex if the graph is disconnected then the deleted vertex is called
articulation point.

Example of BFS & DFS

V{A,B,C,D,E,F,G}

E{AB,BD,DE,BC,EF,CF,FG}

BFS-{AB,BD,BC,DE,CF,FG} DFS-{AB,BD,DE,EF,FG,FC}

A

B

D

E G

C

F

B

D

E G

C

F

A
A

B

D

E

C

F G

