Non comparison based sorting

Comparison Based sorting algorithm

- Selection Sort, Bubble Sort, Insertion Sort: O(n²)
- Heap Sort, Merge sort: O(nlogn)
- Quick sort: : O(nlogn) average case

What is common to all these algorithms?

- Make comparisons between input elements

 $a_i < a_j, a_i \le a_j, a_i = a_j, a_i \ge a_j, or a_i > a_j$

why non- comparison based algorithm?

The performance of comparison based algorithm you will realize that bubble, selection and insertion sort take O(n) time to sort n items. While heap sort, quick sort and merge sort take around $O(n\log n)$ and it can be proved that any comparison based sorting algorithm will take at least O(nlogn) operations to sort n elements hence we need a non comparison based algorithm which allows sort elements in linear time.

Linear sorting algorithms (Non comparison based sorting)

- Counting Sort
- Radix Sort
- Bucket sort

Counting Sort: In this sorting , no comparisons between input elements occur anywhere in this sorting .Counting sort is stable.

- Assumptions:
 - n integers which are in the range [0 ... r]
 - r is in the order of n, that is, r=O(n)
- Idea:
 - For each element x, find the number of elements x
 - Place x into its correct position in the output array

1	2	3	4	5	6		
1	0	1	1	0	1		
i=5, A[i]=3			C[A[i]] =C[3] =2				
1	2	3	4	5	6		
1	0	2	1	0	1		
i=6, A[i]=4	C[A[i]] =C[4] =2						
1	2	3	4	5	6		
1	0	2	2	0	1		
i=7, A[i]=1			C[A[i]] =C[1] =2				
1	2	3	4	5	6		
2	0	2	2	0	1		
i=8, A[i]=4	C[A[i]] =C[4] =3						
1	2	3	4	5	6		
2	0	2	3	0	1		

C[i] contain number of time i appears in Array A

Step 2: Find the number of elements <= A[i]

C array contain frequency of each element for range 1 to r

1	2	3	4	5 6	ò
2	0	2	3	0	1

 $C_{\mbox{\tiny new}}$ contains number of elements less then equal to A[i]

 $C_{new}[0] = C[0]$

 $C_{new}[i] = C_{new}[i-1]+C[i]$

Algorithm:

- Start from the last element of A
- Place A[i] at its correct place in the output array
- Decrease C_{new}[A[i]] by one

Array A

$\boldsymbol{C}_{\text{new}}$

1	2	3	4	5	6
2	2	4	7	7	8

Start with **last index** of array which **8** with element 4 place at its correct place in the output array B which is 7th palce with help of C_{new} array and decrease $C_{\text{new}}[A[i]]$ by one

$\mathbf{C}_{\mathsf{new}}$

1	2	3	4	5	6
2	2	4	6	7	8

Index: 7

Array B

$\mathbf{C}_{\mathsf{new}}$

1	2	3	4	5	6
1	2	4	6	7	8

Index: 6

Array B

$\mathbf{C}_{\mathsf{new}}$

1	2	3	4	5	6
1	2	4	5	7	8

Index: 5

```
Array B
```


\mathbf{C}_{new}

1	2	3	4	5	6
1	2	3	5	7	8

Index: 4

$\mathbf{C}_{\mathsf{new}}$

1	2	3	4	5	6
0	2	2	4	7	7

Algorithm

Analysis of algorithm:

COUNTING-SORT(A, B, n, k) Overall time: O(n + r)٠ 1. for $i \leftarrow 0$ to r In practice we use ٠ 2. do C[i] \leftarrow 0 -----O(r) Counting sort when r **for** j ← 1 **to** n 3. = O(n) **do** $C[A[j]] \leftarrow C[A[j]] + 1$ ------ O(n)4. C[i] contains the number of elements equal to i 5. \Rightarrow running time is O(n) 6. for i \leftarrow 1 to r **do** C[i] \leftarrow C[i] + C[i-1] -----O(r) 7. 8. C[i] contains the number of elements \leq i 9. for $j \leftarrow n$ down to 1 ----- O(n) $\textbf{do} \; \mathsf{B}[\mathsf{C}[\mathsf{A}[\;j\;]]] \leftarrow \mathsf{A}[\;j\;]$ 10. $C[A[j]] \leftarrow C[A[j]] - 1$ 11.