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                               In carrying out any statistical investigation, one starts by 

taking a suitable probability model for the phenomenon (X) that one seeks to 

describe. According to the probability model, the distribution function 

(denoted by F) is supposed to be some (unspecified) member of a more or 

less general class of distribution functions. Here one’s goal may be the task 

of specifying F more completely than that is done by the model. The task is 

achieved by taking a random sample X1,X2,…Xn from the parent population . 

These observations are the raw material of the investigation and are used to 

make a guess about the distribution function F which is partly unknown. 

Thus statistical inference is the science of drawing the conclusions about the 

population on the basis of a random sample drawn from the parent 

population.  So, we can term it as the calibration zone of statistics. Now 

onwards we will learn more about statistical inference.   

 

 

Parameter and statistic 
 

                             When we use sample observations to get an overview 

about population values it is called estimation. e.g. we want to study average 

income of an industry worker in a metro city. For this, first we will chalk out 

population of industry workers in that metro city. Then since the number of 

industry workers is large, we will find an appropriate sample of workers. 

Then, a possible justified method of estimating average income of the 

workers is to obtain average income of the worker from the sample. This 

sample average may be an estimate of the population average. Let us define 

two more terms i.e. the parameter and the statistic. 

Parameter: A parameter is defined as a constant of the population. In other 

words, it is a measure which describes a population value. i.e. a parameter 

provides information about population e.g. population mean, population 

variance etc. . 

Statistic: A statistic is defined as a function of sample observations. It is 

independent of unknown parameters. Sample mean, sample median, ith 

observation of a sample etc. are some examples of statistics. The purpose of 

estimation is to find that statistic which is a good representative of a parameter. 

This statistic is called an estimate of population parameter. 
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The Estimation, thus, is that branch of statistics where we learn about finding 

an estimate of population parameter through statistic . 

Suppose the population under investigation is having the density function                                                                                                                                                       

f(x; θ1, θ2, θ3,.., θm), where x is the variate and θ1, θ2,..., θm are m parameters 

of the distribution. For example, in the case of normal distribution, the 

density function can be written as N(x; μ, σ2). Suppose Xi (i = 1,2,.., n) are n 

observations of a random sample. In estimation problems, we define 

estimators, for one or more of the parameters in terms of the sample values 

and these estimators, naturally will be functions of the sample values.  

 

Parametric and non-parametric methods  

 

                In the development of Statistical methods ,the techniques of 

inference that were first to appear were those which involved many 

assumptions about the distribution of  sample values X1,X2,….Xn. In most of 

the cases, it is assumed that these are i.i.d. normal variables. In any case, it 

would be assumed that the joint distribution has a particular parametric form 

like  normal or exponential , only some or all of the parameters  may be 

unknown. Statistical inference in these cases would relate solely to the value 

or values of some or all of the unknown parameters .This is called 

parametric inference.  
 

Comparatively, a large number of methods of inference have been developed 

in Statistics which do not make too many assumptions about the distribution 

of X1,X2,…Xn .It  may, simply be assumed that these are i.i.d. random 

variables having a common continuous distribution but no parametric form of 

the common distribution may be assumed. Statistical inference under such a 

set up is called non parametric  inference.  

 

Likelihood function of sample values  

 

                Let X1, X2 ….Xn  be a random sample of size n taken from the 

population whose  

p.d.f. or p.m.f.  is f(x,θ) , θ is the parameter . θ may be single or vector valued. 

Then, likelihood function of sample values denoted by L or L(x1,x2,…xn;θ),is 

defined as  

           L= L(  x1,x2…..xn  ;  θ  )   

            =f(x1,θ). f(x2,θ)…… f(xn,θ) 

                     n 

            =      П   f(xi,θ) 

                    i=1    

 

 

Actually, likelihood function of sample values gives the probability of getting a 

specific sample of size n from the population .  

 

 

 

 



 3 

Likelihood function 

 

1.  Let x1, x2 ,…..,xn be a random sample from a N (μ,σ2) .Then    
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2. If  a  random sample of size n  has been taken from a Poisson population with 

p.m.f.  

 

                      f(x) =   e- λ   
λ x  /  x!    , where  0 <  λ  < ∞ , x= 0,1,2,…. ,∞ 

 

then likelihood function of the sample values is 

 

                 L =  ( e –nλ  . λ ∑x  )/  x 1!
   x2 !  ….. x n ! 

 

3. For a random sample drawn from a binomial population with parameters n and 

p , i.e. with p.m.f.  

 

                    f(x) =  nCx . p
x . (1- p) n-x   

  

            the likelihood function is   

 

                      L =    nCx . p
x . (1- p) n-x    

 

     It is important to note that the likelihood function in the case of binomial 

distribution is same as its p.m.f. . 

 

4. For a random sample of size n from uniform population with p.d.f .  

 

                       f(xi, θ) = 1/ θ   ,  0 < x < θ  ,   0 < θ  < ∞  

                                  = 0     other wise  

 

  the likelihood function is  

 

                                  n 

                  L    =      П   f(xi,θ) 

                                  i=1    

 

                         =    ( 1/ θ ) n   ;  0 ≤   x1 , x2 ,…, xn  ≤  θ. 
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Sampling distribution 

 

                    Statistical inference helps us to estimate the unknown parameter 

using statistics. We first obtain the statistic and on that basis we estimate the 

parameter. As we are aware a number of different samples can be obtained from 

the population. The values of the statistic computed from these different samples 

may not be equal. In statistical terms we can say that a statistic is a variable 

quantity whose value changes with each sample. Since each sample is obtained 

through some specified procedure and a probability of drawing each sample 

already exists, certain probability is also associated with each value of statistic. 

So we may say that a statistic is a random variable which takes on certain values 

with some probability law. 

 

The probability distribution of a statistic is called its sampling distribution. 

                     

Thus the probability distribution of sample mean is called the sampling 

distribution of sample mean, and probability distribution of sample variances is 

called the sampling distribution of sample variance. In the same way we can have 

sampling distributions of sample proportion, sample median or of any other 

statistic we want to use. 

Further it is also very important to note that the sampling distribution of a 

statistic is dependent on the size of the population, the size of the sample and on 

the method by which the units are selected in the sample. 

 

1. If a sample of size n  is taken from a normal distribution N (μ , σ2)  with 

known variance of the population is known , then the sample mean is found to be 

normally   distributed  with mean μ and variance σ2 /n   i.e. 

 

                                      X   ̴  N(μ , σ2/n )  . 

 

2. If the sample is taken from a normal distribution with unknown variance, then         

            

                                     
s

nX )( 
   ̴     t n-1   , 

                                    Where s2  = 2
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3. The distribution of  sample median, say m  from a normal population N (μ,σ2) 

is also a  normal and is represented as  

 

                                   m   ̴  N(μ , ( π σ2 )/2n  ) 

 

 

 

 

 

 

 



 5 

 

Standard error of the statistic 

 

               The standard deviation of a statistic is called its standard error and the 

variance of this statistic is called its sampling variance e.g. standard error of 

sample mean from a normal population with known variance is 
n


. 

 

 

Problem of Statistical Inference 

 

 The problem of Statistical Inference can be divided into two parts – 

1. Estimation of parameters, 

2. Testing of hypothesis. 

 

1. Estimation of parameters  : 
 On some occasions our interest will be in such feature as the central 

tendency or dispersion of the distribution of  X1,X2,….Xn .In order to make a 

conjecture about this feature ,we may use  some statistics T ,i.e. some 

measurable function of X1,X2,….Xn   . To be precise if   x1, x2, …. xn  be the 

available set of observations then we put forward the corresponding value of 

T , say  

                                      t = T ( x1, x2, …. xn  ) , 

as the likely value of the parameter of the distribution .This t is then our 

estimate of the parameter  and is also called the point estimate. The problem 

of inference in this case takes the form of point estimation i.e. estimation of 

the  parameter by a single value . 

 In some cases one may give, instead of a single value as the likely estimate 

of the parameter, a set of values, this set  being determined in terms of the 

observations, such that the actual value of the parameter  may be considered 

likely to belong to that set. Estimation of the parameter is now achieved by 

means of a confidence set.   Usually the set is taken to be an interval and then 

the statistical procedure is called interval estimation of the parameter of the 

distribution. 

To summarise we can say that when a single number is used to estimate an 

unknown parameter, this estimate is called point estimate and this method is 

termed as point estimation. 

But sometimes we find that a point estimate is not sufficient as it may be 

either correct or incorrect. Thus we are not sure about its reliability. Also a 

point estimate is of no use if it is not accompanied by an estimate of the error 

that might be involved. Then we estimate the parameter by method of 

interval estimation where instead of a point value an interval is provided i.e. a 

parameter is generally estimated to be within a range of  the values rather 

than as a single number. So when an interval of values is used to estimate a 

population parameter it is called interval estimation and this estimate is 

called the interval estimate.  

Thus if we say that the average height of men whose ages are between 25 to 

30 years is 168 cm. on the basis of a sample then it is a point estimate and 

when we  
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say that this height is expected to lie between 165 cm. to 171 cm. it is called 

an interval estimate.  

 

2. Testing of Hypothesis  

 

In some situations we start with tentative notion about the feature of the 

distribution that we are interested in. This idea may be suggested to us by 

some authority (e.g. a manufacturer placing a new product in the market or a 

leading scientist propounding some new scientific theory) or by the results of 

the previous investigations conducted in the same field or in a similar field. 

We may then like to know how tenable or valid the idea is in the light of the 

observations   ( x1, x2, …. xn  ) . The inference problem is now one of testing 

a hypothesis about the unknown feature of the distribution. Note that the 

model used and the hypothesis being tested are both assumptions regarding 

the probability distribution of  X1,X2,….Xn . However, the hypothesis is an 

assumption the validity of which is questioned ,but is taken for granted.   

In much simpler words any assumption that we make about a population 

parameter is called a hypothesis and the statistical procedures that are used to 

test the hypothesis on the basis of sampled observation are covered under the 

topic testing of hypothesis. 

For example a doctor may set up a hypothesis that smoking increases the risk 

of throat cancer in human beings. To ascertain this he will collect some 

primary or secondary data and then after some statistical analysis he might 

approve or disapprove it. This is the problem of testing of hypothesis. 

Additionally the assumption that we wish to test is called a null hypothesis 

and the assumption that we accept in case the null hypothesis is rejected is 

called alternative hypothesis.  

 

      specific sample of size n from the population .  

 

      The problem of Statistical Inference can be divided into two parts – 

1. Estimation of parameters, 

2. Testing of hypothesis.  

When a single number is used to estimate an unknown parameter, this 

estimate is called point estimate and this method is termed as point 

estimation. 

 

When an interval of values is used to estimate a population parameter it is 

called interval estimation and this estimate is called the interval estimate. 

  

 Any assumption that we make about a population parameter is called a 

hypothesis and the statistical procedure that is used to test the hypothesis on 

the basis of sampled observation is called testing of hypothesis. 
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Point Estimation 
                      Every one of us make estimates in our lives. For example 

while going away for vacation we estimate  the possible expenditure. Similarly a 

student estimates the time he requires for doing revisions before examination. A 

sportsperson judges himself on the basis of practice sessions and so on. Business 

organizations, shopkeepers, institutions ,governing bodies all estimate one thing 

or another with the hope that the estimates bear a reasonable resemblance  to the 

outcome. The question here is what estimation is in statistical terms? A one line 

answer to this query is that the estimation is the statistical method of obtaining 

the value of the parameter from a possible continuum of alternatives. In the 

ongoing text we will take a deeper look in topic. 

                                If we use the value of a statistic to estimate a population 

parameter, this value is a point estimate of the parameter. For example, in the 

case of binomial  (n, p) population, if we use sample proportion to estimate the 

parameter p, this estimate is called point estimate because it is single number, or 

point on the real axis. The statistic, whose value is used as the point estimate of a 

parameter, is called an estimator.  

                    Since estimators are random variables we need to study their 

sampling distribution. For instance, when we estimate the variance of a 

population on the basis of a random sample, we can hardly expect the value of s2, 

which one gets from the sample, to be actually equal to σ2, but it will be certainly 

reassuring if the value is close to σ2. Also, when there are more than one statistics 

available to estimate the parameter of a population, (for example the mean and 

the median of the sample to estimate the population mean in N (μ, σ2 ) ) ,it is 

important to know, among other things, whether the sample mean or sample 

median is more likely to yield a value which is actually close to parameter. 

Theory of Point Estimation 

Let  X1, X2……Xn be a random sample of size n drawn from the population 

whose p.d.f. or p.m.f. is f(x, θ), θ is the parameter of the population. We denote 

the sample observations x1, x2 …………..xn by x i.e.,  

   x  =  (x1, x2…………xn) 

Suppose we are interested to determine (or estimate) the true value of θ. It 

may be assumed known that it lies in a certain set Ω, known as the parametric 

space (or parameter space) 

 For the purpose of estimation, we make use of some statistic T, a 

measurable function of sample values. The value of T at  x is assumed to be 

t=T ( x ). One may propose to estimate θ by this value t, known as estimate of θ 

corresponding to the given random sample x . 

To make a distinction, the function T is called the estimator of θ. Thus, 

estimator is defined as a function of sample values while estimate is the value of 

estimator for a specific set of sample values x  . One should note here that a 

statistic is also defined as the function of sample observation. A statistic becomes 



 8 

an estimator as soon as one estimates the unknown parameter θ by it. Thus, every 

estimator is a statistic but every statistic is not an estimator. A statistic becomes 

an estimator only when one proposes to estimate an unknown parameter (or a 

function of unknown parameter) by it. 

Since random sample x   will differ from one case to another, thus 

leading to different estimate in different cases. One cannot expect that the 

estimate in each case will be good in the sense of having only small deviation 

from true value of θ. Hence to judge the desirability (or otherwise) of any 

estimation procedure, one should really judge the properties of the estimator T. 

Obviously T may be regarded as a good estimator if it gives, in general, values of 

T that deviate from θ only by a small amount, that is, if the probability 

distribution of T has a high degree of concentration around true value of θ in Ω. 

The value of T for a specific   x is also known as point estimate of θ. The 

problem of inference  in this case is known is ‘Point Estimation’ i.e. estimation 

by a point or a single value (on the basis of  x drawn from the parent population). 

 Now the question is how to know about the estimator for the estimation 

of θ? The answer is provided in the form of describing different methods of 

estimation. Some of the various methods available are– 

(1) Method of moments 

(2) Method of maximum likelihood  

(3) Method of minimum variance 

(4) Method of least squares  

(5) Method of minimum chi-square. 

These methods give different estimators for the estimation of the same 

parameter. These methods have been discussed in other blocks/ units in detail. 

Now the question arises which one of the estimators should be chosen from 

and why? 

The answer has been given by describing various desirable properties of a 

good estimator. 
 

 Properties of a Good Estimator 

A very important decision, which an experimenter has to take is to decide 

which estimator one should choose among a number of possible estimators. The 

answer is provided by defining various desirable statistical properties of the 

estimators like unbiased ness, minimum variance, consistency, efficiency and 

sufficiency  to decide which estimator is most appropriate to a given situation. 

Here following desirable properties of a good estimator are being discussed- 

(1) Unbiased ness 

(2) Consistency 

(3) Efficiency 

(4) Sufficiency 
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 Unbiasedness  

Let x1, x2 … xn be a random sample of size n taken from the population 

where p.d.f. or p.m.f. is f(x, θ), θ is the unknown parameter and T be an estimator 

of θ. 

Then T is said to be an unbiased estimator of θ if  

E(T) = θ 

If  E T   , T is known as a biased estimator of θ and bias in T is defined as             

bias (T)   = bias in T = E(T)–θ. 

If E(T) > θ, T is called positively biased estimator of θ and if E(T) < θ, T is 

called negatively biased estimator of θ. 

Some times, it is noted that  

 E (T) → θ as n → ∞. 

In this case, T is known as asymptotically unbiased estimator of θ. 

A very important point about unbiasedness is that unbiased estimators are 

not unique. That is, there may exist more than one unbiased estimator for a 

parameter. It is also to be noted that unbiased estimator does not always exists.  

Example (a) 

 

If X has a binomial distribution with parameters n and θ, then x/n, the 

observed proportion of success, is an unbiased estimator of the parameter θ. 

 Proof:  Since E(x) = nθ, it follows that 
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Hence x/n is an unbiased estimate of θ. 

Example (b) 
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Where  
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Then Y follows a χ2 distribution with (n – 1) degrees of freedom as 

sample observations have been drawn from N (μ, σ2) so that E(Y) = (n–1). 
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   = σ2  

 Consistency  

The statistics T is said to be a consistent estimator of parameter θ, if T 

converges to θ in probability i.e., 

  Pr T    1 

or   Pr T    0  

Consistency is an asymptotic property, namely a limiting property of an 

estimator i.e. when n is sufficiently large we can be certain that the error made 

with a consistent estimator will be less than any small reassigned constant. 

A Sufficient Condition for Consistency  

T is a consistent estimator of θ if  (i) E(T)→θ 

(ii) Var(T)→0 

Proof: - For a r.v. X having finite mean and variance, we have from 

Chebychev’s Inequality, 
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Pr x E x
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Applying it to ‘T’ we get 

    
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Var T
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Making n → ∞ and applying (i) & (ii), we may write 

 Pr T for n     1  

But probability can never exceed unity, therefore, we write 

 Pr T as n     1  

Showing T to be a consistent estimator of θ under (i) & (ii). 

        Proved  

Mean Square Error (or m.s.e.) 

Before defining the concept of efficiency let us define the concept of 

mean square error of an estimator (or statistic)  



 11 

 The mean square error of an estimator T is defined as  

        m.s.e.      T MSE T E T  
2

 

         E T E T E T 
2
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   (Cross term vanishes) 

   = Var (T) + (bias in T)2 

If T is an unbiased estimator of θ then bias in T is zero and in this case, 

 m.s.e. (T) = Var(T) (as E(T) = θ) 

Thus for an unbiased estimator T of θ its mean square error coincides with its 

variance. 

 Efficiency  

Among the class of all possible estimators for estimating θ, one which has 

the minimum m.s.e. is called most efficient estimator of θ.  

 However if T1 and T2 are two estimator for estimating θ, then T1 is said to 

be more efficient then T2 for estimation of θ if  

  m.s.e. (T1) < m.s.e. (T2).  

The efficiency of T1 w.r.t., T2, denoted by E(or e), is defined as 

   
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However if we are given the class of unbiased estimators for estimating θ, 

we may replace m.s.e. by variance for the concept of efficiency. It has already 

been stated that in case of unbiased ness m.s.e. coincides with the variance. 

We have already indicated that when there are two unbiased estimators 

for a parameter, the estimator with less variance is more desirable. If T1and T2 

are two unbiased estimators of parameter θ and the variance of T1 is less than the 

variance of T2 then T1 is said to be relatively more efficient. The most efficient 

estimators, among a class of consistent and unbiased estimators is one whose 

sampling variance is less than that of any other estimator. Whenever such an 

estimator exist, its provides a criterion for measurement of efficiency of the other 

parameters. 

If T1 is the most efficient estimator with variance 1

2 , T2 is any other 

estimate with variance 2

2 , then the efficiency E of T2 is defined as  

E 



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2

2

2
 This is always < 1 . 
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For example, the efficiency of the sample median of normal population 

can be determined in relation to the most efficient estimator, x  (the mean of the 

sample). The efficiency of the median of the sample is (for large n)  

   
 

n

n

ansamplemediVar

xVar
E
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2

2
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 The minimization of m.s.e. for all   it self is found to be a difficult 

task. One may resolve this problem giving  insistence to unbiased ness that is, if 

one confines to the class of unbiased estimators. Minimization of m.s.e. will then 

amount to the minimization of the variance. 

 Criterion of unbiased ness has no great merit. It only provides a process 

of choosing estimators within a mathematically tractable framework.  

The criterion of unbiased ness may be deemed defective in cases where biased 

estimators have smaller m.s.e. than unbiased ones. The question, then, arises why 

to leave them out of consideration ? In some investigation it becomes necessary 

to pool the evidence collected from several sources. The evidence may be in 

nature of an estimate, perhaps with a standard error attached to it. If the estimates 

are unbiased then a combined estimate may be formed with reduced standard 

error and with the accumulation of more evidence the true value may be 

approached. On the other hand, if biased estimates are combined without any 

indication regarding the magnitude of the bias, then nothing definite can be said 

about such combined estimates. The bias may actually exceed the standard error 

at some stage and combined estimate may ever approach the true value.  

                Minimum Variance Unbiased Estimator (MVUE) 

T is known as best estimator of θ if it is unbiased for θ and has the 

minimum variance among the class of all possible unbiased estimators for 

estimating θ. In this case, T is also known as (uniformly). Minimum Variance 

Unbiased Estimator of θ. In other words the statistic T is known as UMVUE of θ 

if it is unbiased and has smallest variance (for each θ) among all possible 

unbiased estimator of θ i.e. if  

(i) E(T) = θ  for every θ Є Ω  

(ii) Var(T) < Var(T1)  for every θ Є Ω  

Where T1 is any other estimator of θ satisfying (i). 

We know that  

M.S.E.(T) = (Bias in T)2 + Var(T) 

One can observe that MVU estimator makes the first contrast (i.e. bias in 

T) of MSE a minimum (i.e. zero) and then also make the second contrast i.e. Var 

(T), a minimum for all θ. This, of course, does not mean that T will have the 

minimum mean square error for all θ. However it is evident that by minimizing 
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the two contrasts separately, T will, on the whole (i.e. through out the parametric 

space) keep the MSE at a low level. 

MVUE and CR Inequality 

While an estimator may be directly examined for unbiased ness it is not 

immediately apparent how to satisfy one self that an estimator has the smallest 

variance among the class of all possible unbiased estimators.  

 Some methods in literature are available to solve this problem. One 

method is based on the use of Cramer-Rao (or Rao-Cramer or CR) Inequality.  

              CR Inequality 

Let θ be a single parameter varying over the parametric space Ω and that 

x1, x2 … xn be a random sample of size n taken from a continuous population 

having p.d.f. f(x,θ). The likelihood function of sample values is given by  

                       L L x x x f x x xn n 1 2 1 2, ,... ; , ,... ;   

 


 f xi

i

n

,
1

 

For sake of notational simplicity the multiple integral  

   ... , ,... ; ...f x x x dx dx dxn n1 2 1 2












  

will be denoted by Ldx
x

  

Let us make the following assumptions known as regularity conditions 

of CR inequality: 

(i) Ω is a non-degenerate open interval on the real line, 

(ii) For almost all  x x x xn 1 2, ,...  and all  , 




L







 exists, the 

exceptional set, if any being independent of θ 

(iii) The differentiation is possible at least ones under the sign of integral that 

is 







Ldx

L
dx

x x

   

(iv) T be an unbiased estimator of ψ(θ)  

i.e.    E T     

(v)  







T Ldx T

L
dx

x x

. .   

(vi)  E
L




log










2

exists and is positive for each θЄΩ. 

Under these assumptions  
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 
 

  





 


2

2
2

/log

)(






LE
TVar T  

Where    



, which is finite and exists. 

We may denote 

2

)log(











 L
E  by  I   

which is called by Fisher the amount of information about θ, supplied by the 

sample, and is reciprocal of the information limit to the Variance of T . 

Proof 

We have Ldx
x

 =1 

Differentiating it w.r.t. ‘θ’ and using assumption (iii), we have 





L
dx

x

  0  

Or  
1

0
L

L
Ldx



   or 




log L
Ldx  0  

Or  E
L



log







  0  or E(Q) = 0    (1)  

Where   Q
L
















log
  

Again      E T     

Or    TLdx
x

     

Differentiating both side partially w.r.t. ‘θ’ and applying (v)  

 
 

T
L

dx
x




 

 

     

or   T
L

L
Ldx

x

1 


 









   .  

or      E TQ                              (2) 

      Var Q E Q E Q2 2 2

   

 = E(Q2) as E(Q) = 0     










E

L



log
2

                         (3) 
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Also,        Cov TQ E TQ E T E Q  .  

    E TQ as E Q 0  

     [using  (2)]                      (4) 

We may write       Con TQ Var T Var QTQ  .  

[Where ρTQ is the correlation coefficient between T & Q]. 

So  {Cov(TQ)}2 < Var(T). Var(Q) 

Or   
  
 

Var T
Cov TQ

Var Q


2

 

  














 





2

2

E
Llog

 [using (3) and (4)]  

      Proved. 

The CR inequality remains valid even when r.v. x1, x2………xn (a 

random sample of size n drawn from the parent population) are all discrete. The 

proof remains the same. Only the multiple integrals are replaced by appropriate 

multiple signs. 

An unbiased estimator T of θ, which attains the lower bound of Cramer 

Rao inequality, is known as Minimum Variance Bound estimator (MVB 

estimator). One should keep in mind that MVBE and UMVUE may be different 

at times. The unbiased estimator which attains the lower bound of CR inequality 

is necessarily UMVUE.  

Sometimes there may exists a class of unbiased estimators whose 

minimum variance may be more than the lower bound of CR inequality. Thus, 

though the variance of this estimator may not attain the lower bound of CR 

inequality, it may or may not be UMVUE.  

 It may also be noted that in case the regularity conditions underlying CR 

inequality do not hold, the least variance may be less than CR lower bound.  

 

Generally, two sets of criteria of a good point estimator viz (1) unbiased 

ness and minimum variance and (2) consistency and efficiency are considered. 

The criteria of having minimum variance and (asymptotic) efficiency are similar 

and in a way, are necessary accompaniments of the basic criteria of unbiased 

ness and consistency respectively. 

The criterion of unbiasdness is better in the sense that it is applicable 

irrespective of the number of random variables under consideration. The criterion 

of consistency and efficiency (particularly in case of asymptotic efficiency) 

relates to the asymptotic behavior of the statistic. In other words, a consistent 

estimator may be expected to give a close estimate in case sample size is 

sufficiently large but may leave completely in dark regarding its performance 

when sample size is small.  
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However, consistency may be a better criterion than unbiased ness in the 

sense that the central tendency of the distribution of the estimator may be 

towards θ or its parametric function as the case may be, for large n, without 

confirming to any particular measure of central tendency. Unbiased ness on the 

other hand only ensures that the mean of the estimator will be θ. Without 

bothering about the appropriateness of the mean as a measure of central tendency 

in the particular situation some times in a given situation, the mean of an 

estimator may not even exits. Even if it does, the criterion of unbiased ness may 

lead to undesirable estimators. Neither unbiased ness nor consistency leads to 

unique estimators but the scope of arbitrariness is much greater in the case of 

consistency than unbiased ness. Thus suppose Tn is a consistent estimator of θ. 

Then we may think of infinitely many others eg. Tn + 1/ θ(n) or Tn (1 + A/ θ(n)) 

where A is a constant independent of n and θ (n) is an increasing function of n, 

are also consistent estimators of θ. This sort of arbitrariness does not arise in case 

of unbiased ness. 

There is one point that consistency has in its favour. Commonsense 

requires that if T is considered a good estimator of, than and ψ(θ) be a function 

of θ, then ψ (T) should be deemed an equally good estimator of ψ(θ). From this 

point of view, unbiased ness may not be considered as a good criteria because ψ 

(T) will not be unbiased for ψ(θ) unless it is a linear function, even if T is 

unbiased for θ. The criterion of consistency may be supposed to meet this 

requirement because in a large class of problems consistent estimators have this 

desirable property of invariance.  

 

Example 1 

 Show that in sampling from a normal population with mean µ and 

variance σ2, the sample mean is consistent estimator of µ. 

 In sampling from a normal population, the sample mean x  is also 

normally distributed with mean µ and variance σ2/n. 

(i.e.)    E x    and  V x
n


2

 

As   n ,  E x    and  V x
n


2

 

x , thus, satisfies  the conditions for consistency of the estimator and therefore  is 

a consistent estimator for population mean µ. 

Example 2  

If x1, x2 and x3 form a random sample from a normal population with  

mean µ and the variance σ2, what is the efficiency of the estimator 

t
x x x


 1 2 32

3
 relative to x ? 

Solution: Here we have 

  x
x x x


 1 2 3

3
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Since    Var x Var xi  2 1

9
,        Var x Var x Var x1 2 3   

var x 
2

3
 (Variance of the sampling distribution of Means). 

 Var t Var
x x x


 1 2 32

4
 

    



 2

2
2 2

16

4

16 16

6

16
 

efficiency of t relative to 
 
 

x
t

x


var

var
 

 





2

2

3
6

16

8

9
 

Example 3 

 If x1 is the mean of a random sample of size n from a normal population 

with the mean µ and the variance 1

2  and x2 is the mean of a random sample of 

size n from a normal population with the mean µ and the variance 2

2  show that 

(a)  wx w x1 21   value 0 1 w  is an unbiased estimator of µ 

(b) the variance of this estimator is a minimum  

when w 




 

2

2

1

2

2

2
 

Solution  

a.  Let T  = w x1 + (1 – w) x2 

 E (T)  = E(x1) + (1 – w) E(x2) 

  = w µ + (1 – w) µ = µ. 

Hence T is an unbiased estimator of µ. 

b.  Var (T) = w2 Var (x1) + (1 – w)2 Var (x2) 

  = w2 
n

1
2

 + (1 – w)2 
2

2

n
 

If Var (T) is minimum, then d/dw (Var(T)) = 0 

and    
d

dw
Var T

2

2
 must be + ve. 

 d/dw (Var(T)) = 0 gives 

  2 2 1 01

2

2

2

w
n

w
n

 
    

i.e  w (1

2  + 2

2 ) = 2

2  
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i.e  w 




 

2

2

1

2

2

2
 

For this value of w   
  d Var T

dw

2

2
is positive . Hence Var (T) is minimum when 

W 




 

2

2

1

2

2

2
 

Example 4 

 X1, X2 and X3 is a random sample of size 3 from a population with mean 

µ and variance σ2
. T1, T2 and T3 are the estimators used to estimate mean value µ 

where  

T1 = X1 + X2 – X3, T2 = 2X1 + 3X3 – 4X2 and  

3

321
3

XXX
T





 

I. Are T1 and T2 unbiased estimators? 

II. Find value of λ such that T3 is unbiased estimator of µ 

III. With the value of λ is T3 a consistent estimator? and 

IV. Which is the best estimator? 

Solution Since X1, X2, X3, is a random sample from a population with mean µ 

and varianceσ2  

E(X1)  = µ, Var(X1) =σ2 and Cov(X1,X2) = 0 i≠j =1,2,…,n. 

I. E(T1)  = E(X1) +E(X2) –E(X3) 

= µ + µ- µ = µ 

i.e. T1 is an unbiased estimator of µ. 

E(T2)  = E(2X1) + E(3X3) – E(X4)  

= 2µ + 3µ – 4µ = µ 

i.e.  T2 also is an unbiased estimator of µ 

II. T3 is an unbiased estimator E(T3) = µ 

 1/3 {λE(X1) + E(X2) + E(X3)} = µ 

i.e. 1/3 (λ + 2) µ = µ 

i.e. λ = 1 

III. With λ = 1, 


 x
XXX

T
3

321
3  Sample Mean 

 Sample mean i.e. T3 is a consistent estimator of µ. 

(IV) We have 

         2

3211 3 XVarXVarXVarTVar  

         2

2312 291694  XVarXVarXVarTVar  
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         3213
9

1
XVarXVarXVarTVar   

  
2

3
 

Since Var (T3) is minimum, T3 is the best estimator. 

Example 5 

 If  x x x 
1

2
1 2 , where x1 and x2 are most efficient estimators with 

variance S2, then show that  Var x S



1

2

2
, where ρ is the correlation 

coefficient between x1 and x2. 

Solution 

 Since both x1 and x2 are most efficient estimators  

     V x V x x V x x 







 

1

2

1

4
1 2 1 2  

     


 V x V x Cov x x1 2 1 22

4

,
 


 


 S S S S S2 2 2 2 22

4

2 2

4

 
 

  1
2

2


S

 

 

 In this unit we study about the theory of point estimation. An estimator is 

a statistic that is used to estimate a population parameter, while an estimate is a 

specific observed value of the estimator. A single number that is used to estimate 

an unknown parameter is called a point estimate. A good estimator is one that is 

(a) unbiased (b) consistent (c) efficient, and (d) sufficient.  

The C-R inequality provides the lower bound for the variance of an unbiased 

estimator of )(  and states that 

 
  

2

2'

log
















L
E

tV  

The denominator of this inequality is called the information on  , 

supplied by the sample. This nomenclature is due to R.A.Fisher. 
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Sufficiency and Factorization Theorem 

 
                 In the previous we read about the  properties of a good estimator. 

Sufficiency is another desirable property of an estimator. An estimator is 

sufficient if it makes so much use of the information in the sample that no other 

estimator could extract  additional information from the sample about the 

population parameter being estimated. 

According to R.A.Fisher, “ A sufficient statistic summarizes the whole of the 

relevant information supplied by the sample ”.  

Now we will study the concept of  sufficiency in detail.  

 

Sufficiency 

 
The only information that guides the investigator in making a decision is 

supplied in the form of a random sample of size n drawn from the parent 

population. In most of the cases, it would be too numerous and too complicated a 

set of observations to be directly dealt with and so a simplification or reduction 

would be desirable. Naturally one should use for such reduction of data, some 

statistics that loose as little of the information contained in the sample that is 

relevant to parameter θ. 

 It is this objective that leads to the concept of sufficient statistics. The 

principle of sufficiency is a principle for reducing or condensing the original 

random sample to a few statistics which may than be used for the purpose of 

drawing inference about the parent population characterized by θ. Loosely 

speaking, sufficiency amounts to replacing the sample observations X1. 

X2, ……Xn by  few statistics T1, T2,…. TK and thus discarding information, 

which is not relevant to θ and retaining every thing that is essential. 

T is said to be a sufficient statistic of θ if conditional distribution of 

sample values given (T = t) is independent of θ. This definition is not very 

satisfactory because conditional distribution may not always be defined. 

However where the random variables have purely discrete or purely 

continuous distribution, this definition is alright. Since these two are the cases, 

which we are concerned with at this level the above definition may be taken as 

adequate for our purpose. 

A sufficient statistic T is said to be minimal sufficient if it is a function of 

every other sufficient statistic.  

Note: The term ‘function’ is used here in a wide sense to include vector valued 

functions.  

 

 

 

 

 



 21 

Example  

Let  nXXX ,...,, 21  be a random sample from a Bernoulli population with 

parameter    ‘p’,     0<p<1 

(i.e)   





p)-(1y probabilit  with 0

py probabilit  with 1
iX  

 

      Let    iXT  

      Hence        knk

k

n ppCKTP


 1  

The conditional distribution of  nXXX ,...,, 21  given T, is 

 KTXXXXP n  ...321  

 
 KTP

KTXXXXP n






...321  

 
    k

nknk

k

n

knk

CppC

pp 1

1

1











 

Since the conditional  distribution is independent of the parameter p, 





n

i

iXT
1

 is sufficient estimator for p. 

 

Remark: It can be quite tedious to check whether a statistic is  sufficient  for a 

given parameter by using the above definition based on the determination of 

conditional distribution of sample values given the statistic. 

              To overcome this difficulty Neyman and Fisher developed a method of 

examining sufficiency of a statistic known as Neyman -Fisher Factorization 

theorem.  

 

Neyman-Fisher Factorization Theorem 

The statistic T is a sufficient estimator of the parameter θ if and only if 

the likelihood function of sample values can be written as a product of two 

functions, one being the function of T and θ only ,while other is the function of 

sample values independent of θ. 

Mathematically, T is sufficient statistic  of  θ iff  

   nxxxHTGL ,...,,,, 21  

Where L stands for the likelihood function of sample values, i.e.  

 L f xi

i

n




 ,
1
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(Here x1, x2……xn is the random sample of size n drawn from the population 

whose p.d.f or p.m.f. is f(x, θ) ). 

G(T,θ) stands for the functions of T and θ only and H(x1, x2….xn) denotes the 

function of sample values independent of θ. 

 

Example: 

The statistic X  is a sufficient estimator of the mean of a normal 

population whit mean μ and variance σ 
2 (μ unknown, σ 

2 known).  

The likelihood function of sample values based on a random sample of 

size n is  

L
x

n

i
































1

2

1

2

2

 




exp  

We may write - 

      x x x xi

i

n

i

i

n

    
 

  
2

1

2

1

 

        
 

 x x xi

i

n

i

n
2

1

2

1

  

  because x x xi

i

n

  












  0
1

 

       


 x x xi

i

n
2 2

1

  

 

Hence   























 









 



 2

1

1

2

2

1

2

1

2

1

2

1 n

i

i

n
xx

enxeL





 

Here, the first factor on the right hand side depends only on sample mean  

and the population mean µ , and the second factor dose not involve μ. Therefore, 

according to the factorization theorem, sample mean is a sufficient statistic for 

normal population mean µ with the known variance σ2.    

 

Important about sufficiency 

 

1. The original sample X1,X2,…….Xn is always a sufficient statistic. 

2. A sufficient estimator is always a consistent estimator. 

3. A sufficient estimator may or may not be an unbiased one. 

4. A sufficient estimator is the most efficient one if a sufficient estimator 

exists. 
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The Koopman’s form of the distribution 
 

 

          The most general form of the distributions admitting sufficient statistic is 

Koopman’s form given by 

 

                                xaxgL  exp.h.  

 

where h(θ) and a(θ)  are the functions of the parameter θ only and 

    xxg  and  are functions of the sample observations only. 

     Binomial , Poisson ,Normal, Exponential are some  examples of this type of 

distributions.  

 

 

 

The Invariance Property of A Sufficient Estimator   

 
           If T is a sufficient statistic of parameter θ and 

)(for  sufficient is (T) than T offunction  one  toone is (T)   . 
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COMPLETE SUFFICIENT STATISTICS    

              AND RAO-BLACKWELL THEOREM 
 

                              The concept of sufficiency has already been discussed in 

earlier. The principle of sufficiency plays a very important role in various models 

of statistical inference. Here in this unit another important concept that of 

complete family of distributions has been discussed. 

 

                              Consider the statistic T based on a random sample of size n 

say X1,X2,…..Xn   with joint distribution depending upon   θ   ϵ   Θ . The 

distribution of T itself will in general depend upon θ . Let   )(tf   be the family 

of distributions related to T. 

 

The statistic T or more precisely the family of distributions   )(tf  ;  θ   ϵ   Θ is 

called complete ,if for any measurable function )(T , we have 

  

                         E( )(T = 0         )(T =0    almost everywhere (for all  θ  ϵ  Θ ) 

         i.e.            0)(0)()()(  ttdFtTE      

  Here   E( )(T ) denotes the expected value of   )(T . 

 

If in addition to above property )(T  is such that  )(T   <  M,   for some finite  

M   then T is said to be boundedly  complete .  

 

  . 

 

Some illustrations 

 

1. We have seen that  if X1,X2,…..Xn   are a random sample from the 

binomial distribution with parameter ),10(   whose p.m.f .  

 

                                 
, otherwise ,    0=

0,1= xif    )1( 1 xx  
  

             then the statistic for  sufficient   X=T
i

i is  . 

             Now T has a binomial p.m.f.  

 

              

 

).(.C   = a(t) here         w

,)-(1 .  . a(t) = (T)E         

(T),function any  for  Hence

otherwise.     0=         

.n0,1,2,....=  tif  )1( C=t)(

t

n

t-n
n

0

t

t

t

n

t

g

t

tn

















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 Hence , 

 

                     

. ) -(1/  =   where< <0such that     allfor  

  0a(n)+.........+)1()1()-a(0)(1

1< < 0such that    allfor  0= (T)

n1n 









 na

E

 

 

the left hand side in this identity is a polynomial in λ ,  all the coefficients of 

which must be zero, hence  

 

.n0,1,2.....=for t, 0 = )(t , i.e. for all the values of T with non zero probabilities 

(for all 0 < θ <1 ) . 

Hence T is a complete statistic. In other words, the binomial family of 

distributions  is complete . 

 

2. Let X1,X2,…..Xn   are a random sample from some Poisson 

distribution ,whose p.m.f. may be written as  

.  )(0,   parameter   thewhere

 other wise             0 =          

0,1,2.....=  xif  
!

 ) (- exp
 = (x)f

x
















x

 

we have already seen that T = ∑ Xi    is a sufficient statistic for θ . Again, T is 

also distributed in the Poisson form with parameter nθ i.e. with p.m.f.  

 

 

















<<0such that    allfor  0= a(t).                       

<0such that   allfor  0)(E ,ly consequent

t!

.n (t)
 = a(t)   where

,say  ,   . a(t) )exp(-n  =                  

 
t!

).(n )(-nexp
. (t) = )((E  

 Hence

other wise                0  =          

.0,1,2,....= tif  
!

)(n . )exp(-n
 = )(

0=t

t

t

0=t

t

t

0=t

t




















t

T

t
tf

 

 

 

however , it is known from algebra that a convergent power series which is 

identically zero must have all the coefficients equal to zero . As such , 

 

a(t) = 0 for t=0,1,2,…. 
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i.e. . .0,1,2.....=for t 0)( t  

 

But for every ies.probabilit positive with T  of  values theare  these, )(0,    

Hence T is a complete statistic, or in other words, the Poisson family of 

distributions is complete.  

 

 

 

3. Let X1,X2,………Xn be a random sample from some normal distribution 

with unknown  mean but known variance , say from  

 < <-  where, ),( 2 N .  

 

We know that T = X  is sufficient for θ and that it has the p.d.f.  

 

                exp .
2

n
= g


 t  ( 22 2/)(  tn  )    

If           0 =  TE    ,then 

                    0  =dt  )  t/n  2/(-nt exp )( 222  




t  

 

 

   for     <   <  . However the left hand side is the bilateral Laplace 

transform of the function )2/exp()( 22  ntt  .From the unicity theorem 

of this type of transform it follows that  

 

              )2/exp()( 22  ntt     = 0  ( all   ) 

 

                  allfor       0 = )(t  

 

Hence the family of normal distributions with known variance  is 

complete  . 

 

 

Complete Sufficient Statistic  

 
A statistic which is complete as well as sufficient is known as complete sufficient 

statistic . 

 

Example 1 : In case of a Poisson distribution with parameter  λ  i.e. when 

 

               <  < 0 ,    
!

.e
 )(

-


 x

x
xf   ,  x=0,1,2,… 

 

            

             X   =  sample mean , is a complete sufficient statistic. 
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Example 2 : For a binomial distribution  B( n,p ) , i.e.   p)-(1 ..pC)( x-nx

x

nxf  , 

nX /    is  a complete sufficient statistic for  p . 

 

 

Rao –Blackwell Theorem  
 

                The Cramer –Rao inequality gives us a tool of judging whether or not a 

given unbiased estimator is also an M.V.U.E. . Moreover , the application of 

Cramer –Rao theorem is too restrictive because of its regularity conditions under 

which it is valid . 

  

Rao- Blackwell theorem enables us to obtain  an M.V.U.E. from any unbiased 

estimator by using a  sufficient statistic , say T of parameter θ . The only 

condition that must be fulfilled is that T must also be complete .  

 

 

               Let U be any unbiased estimator of   r( θ ) where r( θ ) is an unknown 

function of θ . Let T be a sufficient statistic of θ . Define  

 

                               TUET )(   ,which is independent of θ . 

                   (   It is guaranteed because of sufficiency of T for θ  ) 

 

              Then , )(T  is itself  an unbiased estimator of  r( θ ) and  

 

                                            (U)Var   )  )( Var(    T  

 

Proof : 

 

We have  , 

               E (U)     =    r( θ )  (as U is an unbiased estimator of  r( θ ) )   

               E(U) may be written as  

               E(U) = E  )( TUE       (  By the theory of conditional expectation ) 

                        = E  ( )(T )          ( As )(T  =    )( TUE   ) 

 Hence , we have  

              E(U)   = E  ( )(T   )     =  r( θ )    

Which shows that    )(T  is an unbiased estimator of   r( θ )    

 

Further ,we may write Var (U) as  

 

             Var ( U ) = Var  )( TUE   +  E  )( TUV     

                                 ( By the theory of conditional  Expectation ). 

 

Variance is a non-negative quantity and expectation of a non-negative quantity is 

always non negative. 
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Hence  

                                       E  )( TUV  >    0   

So that we have    Var (U)   >   Var  )( TUE    

                                             >    Var (  )(T )  as   )(T   =  )( TUE  

                                                                                         Hence Proved. 

 

The implication  of this result is that  if one is given an unbiased estimator  U of   

r( θ ), then one may improve upon U by forming the new estimator  )(T  for 

r( θ ), based on U and sufficient statistics T. This estimator )(T  is unbiased for 

r( θ ) and has smaller variance ( or mean squared error ) than U . This process of 

finding a new improved estimator in the sense of smaller variance , starting from 

an unbiased estimator is called “Blackwellisation” after D. Blackwell. 

 The estimator )(T  will not be better estimator than U in sense of smaller 

variance but best in the sense of smallest variance , provided T is also complete .  

If T is a complete sufficient statistic of    θ  and one may find a function )(T  of 

T such that       E   )()(  rT      Then , )(T  is necessarily  an UMVUE of  

r( θ ) . 

 

 

Example 

 Let  X1,X2,….,Xn   be a random sample from N ),( 2  , 

unknown  andknown  2 . 

  We wish to find out    MVUE of  
2 . We know that    2

1

 



n

i

xT   is a 

complete sufficient statistic of  
2 . Moreover 

2

1











 n

i

x




 follows a chi square 

distribution with n degrees of freedom . 

 

Hence    E  

2

1











 n

i

x




=  n 

 

  Or       











n

i

x
n

E
1

2)(
1

   =  2  

 

  Or       








n

T
E       =   

2  

  Or        E (S0 )      =   
2     where   S0  =  T/n    

 

This shows that    S0 is    MVUE of  
2 . 

                                
Example :  Let X1,X2,….Xn   be a random sample of size n taken from a Poisson 

distribution with parameter     i.e. its p.m.f.  is  
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                           . 0>   , 0,1,2,....=  x;  
!

.
),( 







 x

x

e
xp  

 

Let    be unknown . We wish to find out  MVUE of   

                                    )r(  = Pr (X = m)      ( when m is known ) 

 

                                              =     
!

.
m

m

e 

  

 

Let us define a r.v. U such that  

 

 

           U       =  1   if   Xi= m  

                    

                     =  0    otherwise 

 

      Then ,   

                

) (r  =            

m) (XP  0 +)(P  1  = 
m!

 .e
 =  E(U) 1r1r

m-





 mX
  

 

          Implying  U is an unbiased estimator of  )r(  .  

We know that  T = 
n

1=i

iX  = sample total is a complete sufficient statistics of      

and its distribution is P(n )  i.e. 

 

                            

0,1,2,....=   t                              

!

).(e
 = )()(

-n

t

n
tTPtp

t

r




      

Let us consider  

                             

 

                             












  t=X=T P =       

 )U E( )(

n

1=i

i1r mX

tTT

  

 

 

                                    =

.Pr

,Pr.

1

2

1





























n

i

i

n

i

i

tXT

mtXmX
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                              =          

 

 
!

.

)!(

)1(.
.

!

e
 

)1(-

t

ne

mt

ne

m
tn

mtnm

















 

 

                              =      
 

t

mt

m

t

n

n
C


1

.  

 

          Thus    
 

T

mT

m

T

n

n
CT





1

.)(       is an unbiased estimate of  )r(  

=  
!

.
m

m

e 

. 

  

 

But T is also a complete sufficient statistic of  θ . Hence )(T  is a MVUE of            

)r( =  
!

.
m

m

e 

. 

 

             Here )(T  has been defined as per norms of Rao Blackwell theorem . It 

is unbiased estimator of )r( with a variance that is at least as small as the 

variance of U. In this way ,one may start from any unbiased estimator for )r(  

and get a new one from it by using the conditional expectation of this estimator 

for given T. However all these estimators are equal because T is complete and 

therefore, )(T  is MVUE of )r( . 

 

Example : Let X1,X2,…..,Xn  be a random sample of size n taken from U(0, θ ) 

i.e.  

 

 

                             






 

otherwise       0

0  ; x <0 ,1/
=  ),(


xf     

 

Our problem is to find out MVUE of θ .  

 

Let T = X(n)  be the nth order statistics of θ . 

 

Then T is a sufficient and complete statistics of θ and its p.d.f. is given by  

 

                                     0,0      ,)(  


t
nt

tf
n

n

 

 

Hence ,  dttfTE )(t  =  )(
0



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                       dt
nt

n

n






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t =     

                        

                          = 





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n
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1
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n 





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






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                         = 
1n

n
 

 

     Or               


TE
n

n 1
 

 

 

     Or             






 
T

n

n
E

1
 

 

 

       Or                 )(TE  

 

 

Where       T
n

n
T

1
)(


  

 

 

As T is complete and sufficient statistic of θ and    )(TE   , therefore  )(T  

is MVUE of θ  .   

 

               A statistic which is complete as well as sufficient is known as complete 

sufficient statistic. 

If   U  is an unbiased estimator of  r( θ ), then one may improve upon U by 

forming the new estimator  )(T  for r(θ), based on U and sufficient statistics T. 

This estimator )(T  is unbiased for r( θ ) and has smaller variance ( or mean 

squared error ) than U . This process of finding a new improved estimator in the 

sense of smaller variance , starting from an unbiased estimator is called 

“Blackwellisation” . 

If T is a complete sufficient statistic of    θ  and one may find a function )(T  of 

T such that       E   )()(  rT      Then , )(T  is necessarily  an UMVUE of  

r( θ ) . 

 

 

 

 

 

 

 

 


