
Cache coherency 

In a shared memory multiprocessor system with a separate cache memory for each 

processor, it is possible to have many copies of shared data: one copy in the main 

memory and one in the local cache of each processor that requested it. When one 

of the copies of data is changed, the other copies must reflect that change. Cache 

coherence is the discipline which ensures that the changes in the values of shared 

operands (data) are propagated throughout the system in a timely fashion.
[1]

 

The following are the requirements for cache coherence:
[2]

 

Write Propagation 

Changes to the data in any cache must be propagated to other copies (of that 

cache line) in the peer caches. 

Transaction Serialization 

Reads/Writes to a single memory location must be seen by all processors in 

the same order. 

Theoretically, coherence can be performed at the load/store granularity. 

However, in practice it is generally performed at the granularity of cache 

blocks.  

Definition 

Coherence defines the behavior of reads and writes to a single address 

location.  

One type of data occurring simultaneously in different cache memory is 

called cache coherence, or in some systems, global memory. 

In a multiprocessor system, consider that more than one processor has 

cached a copy of the memory location X. The following conditions are 

necessary to achieve cache coherence:  

1. In a read made by a processor P to a location X that follows a write 

by the same processor P to X, with no writes to X by another 

processor occurring between the write and the read instructions made 

by P, X must always return the value written by P. 

2. In a read made by a processor P1 to location X that follows a write 

by another processor P2 to X, with no other writes to X made by any 

processor occurring between the two accesses and with the read and 

write being sufficiently separated, X must always return the value 

written by P2. This condition defines the concept of coherent view of 
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memory. Propagating the writes to the shared memory location 

ensures that all the caches have a coherent view of the memory. If 

processor P1 reads the old value of X, even after the write by P2, we 

can say that the memory is incoherent. 

The above conditions satisfy the Write Propagation criteria required for 

cache coherence. However, they are not sufficient as they do not satisfy the 

Transaction Serialization condition. To illustrate this better, consider the 

following example: 

A multi-processor system consists of four processors - P1, P2, P3 and P4, all 

containing cached copies of a shared variable S whose initial value is 0. 

Processor P1 changes the value of S (in its cached copy) to 10 following 

which processor P2 changes the value of S in its own cached copy to 20. If 

we ensure only write propagation, then P3 and P4 will certainly see the 

changes made to S by P1 and P2. However, P3 may see the change made by 

P1 after seeing the change made by P2 and hence return 10 on a read to S. 

P4 on the other hand may see changes made by P1 and P2 in the order in 

which they are made and hence return 20 on a read to S. The processors P3 

and P4 now have an incoherent view of the memory. 

As multiple processors operate in parallel, and independently multiple caches may 

possess different copies of the same memory block, this creates cache coherence 

problem. Cache coherence schemes help to avoid this problem by maintaining a 

uniform state for each cached block of data. 

 

Let X be an element of shared data which has been referenced by two processors, 

P1 and P2. In the beginning, three copies of X are consistent. If the processor P1 

writes a new data X1 into the cache, by using write-through policy, the same 



copy will be written immediately into the shared memory. In this case, 

inconsistency occurs between cache memory and the main memory. When 

a write-back policy is used, the main memory will be updated when the modified 

data in the cache is replaced or invalidated. 

In general, there are three sources of inconsistency problem − 

 Sharing of writable data 

 Process migration 

 I/O activity 

 

Therefore, in order to satisfy Transaction Serialization, and hence achieve 

Cache Coherence, the following condition along with the previous two 

mentioned in this section must be met: 

 Writes to the same location must be sequenced. In other words, if 

location X received two different values A and B, in this order, from any 

two processors, the processors can never read location X as B and then 

read it as A. The location X must be seen with values A and B in that 

order.  

The alternative definition of a coherent system is via the definition 

of sequential consistency memory model: "the cache coherent system must 

appear to execute all threads’ loads and stores to a single memory location 

in a total order that respects the program order of each thread". Thus, the 

only difference between the cache coherent system and sequentially 

consistent system is in the number of address locations the definition talks 

about (single memory location for a cache coherent system, and all memory 

locations for a sequentially consistent system). 

Another definition is: "a multiprocessor is cache consistent if all writes to 

the same memory location are performed in some sequential order". 

Rarely, but especially in algorithms, coherence can instead refer to 

the locality of reference. Multiple copies of same data can exist in different 

cache simultaneously and if processors are allowed to update their own 

copies freely, an inconsistent view of memory can result. 

Coherence mechanisms 

The two most common mechanisms of ensuring coherency 

are snooping and directory-based, each having their own benefits and 
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drawbacks. Snooping based protocols tend to be faster, if 

enough bandwidth is available, since all transactions are a request/response 

seen by all processors. The drawback is that snooping isn't scalable. Every 

request must be broadcast to all nodes in a system, meaning that as the 

system gets larger, the size of the (logical or physical) bus and the 

bandwidth it provides must grow. Directories, on the other hand, tend to 

have longer latencies (with a 3 hop request/forward/respond) but use much 

less bandwidth since messages are point to point and not broadcast. For this 

reason, many of the larger systems (>64 processors) use this type of cache 

coherence. 

Snooping 

Main article: Bus snooping 

First introduced in 1983, snooping is a process where the individual caches 

monitor address lines for accesses to memory locations that they have 

cached. The write-invalidate protocols and write-update protocols make use 

of this mechanism. 

For the snooping mechanism, a snoop filter reduces the snooping traffic by 

maintaining a plurality of entries, each representing a cache line that may be 

owned by one or more nodes. When replacement of one of the entries is 

required, the snoop filter selects for the replacement the entry representing 

the cache line or lines owned by the fewest nodes, as determined from a 

presence vector in each of the entries. A temporal or other type of algorithm 

is used to refine the selection if more than one cache line is owned by the 

fewest nodes.
 

 

 

 

  

Directory-based 

Main article: Directory-based cache coherence 

In a directory-based system, the data being shared is placed in a common 

directory that maintains the coherence between caches. The directory acts as 

a filter through which the processor must ask permission to load an entry 
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from the primary memory to its cache. When an entry is changed, the 

directory either updates or invalidates the other caches with that entry. 

Distributed shared memory systems mimic these mechanisms in 

an attempt to maintain consistency between blocks of memory in 

loosely coupled systems. 

Hardware Synchronization Mechanisms 

Synchronization is a special form of communication where instead of data control, 

information is exchanged between communicating processes residing in the same 

or different processors. 

Multiprocessor systems use hardware mechanisms to implement low-level 

synchronization operations. Most multiprocessors have hardware mechanisms to 

impose atomic operations such as memory read, write or read-modify-write 

operations to implement some synchronization primitives. Other than atomic 

memory operations, some inter-processor interrupts are also used for 

synchronization purposes. 

Cache Coherency in Shared Memory Machines 

Maintaining cache coherency is a problem in multiprocessor system when the 

processors contain local cache memory. Data inconsistency between different 

caches easily occurs in this system. 

The major concern areas are − 

 Sharing of writable data 

 Process migration 

 I/O activity 

Sharing of writable data 

When two processors (P1 and P2) have same data element (X) in their local 

caches and one process (P1) writes to the data element (X), as the caches are 

write-through local cache of P1, the main memory is also updated. Now when P2 

tries to read data element (X), it does not find X because the data element in the 

cache of P2 has become outdated. 
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Process migration 

In the first stage, cache of P1 has data element X, whereas P2 does not have 

anything. A process on P2 first writes on X and then migrates to P1. Now, the 

process starts reading data element X, but as the processor P1 has outdated data 

the process cannot read it. So, a process on P1 writes to the data element X and 

then migrates to P2. After migration, a process on P2 starts reading the data 

element X but it finds an outdated version of X in the main memory. 

 

I/O activity 



As illustrated in the figure, an I/O device is added to the bus in a two-processor 

multiprocessor architecture. In the beginning, both the caches contain the data 

element X. When the I/O device receives a new element X, it stores the new 

element directly in the main memory. Now, when either P1 or P2 (assume P1) 

tries to read element X it gets an outdated copy. So, P1 writes to element X. Now, 

if I/O device tries to transmit X it gets an outdated copy. 

 

Uniform Memory Access (UMA) 

Uniform Memory Access (UMA) architecture means the shared memory is the 

same for all processors in the system. Popular classes of UMA machines, which 

are commonly used for (file-) servers, are the so-called Symmetric 

Multiprocessors (SMPs). In an SMP, all system resources like memory, disks, 

other I/O devices, etc. are accessible by the processors in a uniform manner. 

Non-Uniform Memory Access (NUMA) 

In NUMA architecture, there are multiple SMP clusters having an internal 

indirect/shared network, which are connected in scalable message-passing 

network. So, NUMA architecture is logically shared physically distributed 

memory architecture. 

In a NUMA machine, the cache-controller of a processor determines whether a 

memory reference is local to the SMP’s memory or it is remote. To reduce the 

number of remote memory accesses, NUMA architectures usually apply caching 

processors that can cache the remote data. But when caches are involved, cache 



coherency needs to be maintained. So these systems are also known as CC-

NUMA (Cache Coherent NUMA). 

Cache Only Memory Architecture (COMA) 

COMA machines are similar to NUMA machines, with the only difference that 

the main memories of COMA machines act as direct-mapped or set-associative 

caches. The data blocks are hashed to a location in the DRAM cache according to 

their addresses. Data that is fetched remotely is actually stored in the local main 

memory. Moreover, data blocks do not have a fixed home location, they can 

freely move throughout the system. 

COMA architectures mostly have a hierarchical message-passing network. A 

switch in such a tree contains a directory with data elements as its sub-tree. Since 

data has no home location, it must be explicitly searched for. This means that a 

remote access requires a traversal along the switches in the tree to search their 

directories for the required data. So, if a switch in the network receives multiple 

requests from its subtree for the same data, it combines them into a single request 

which is sent to the parent of the switch. When the requested data returns, the 

switch sends multiple copies of it down its subtree. 

COMA versus CC-NUMA 

Following are the differences between COMA and CC-NUMA. 

 COMA tends to be more flexible than CC-NUMA because COMA 

transparently supports the migration and replication of data without the 

need of the OS. 

 COMA machines are expensive and complex to build because they need 

non-standard memory management hardware and the coherency protocol is 

harder to implement. 

 Remote accesses in COMA are often slower than those in CC-NUMA since 

the tree network needs to be traversed to find the data. 

 


