
Cache coherency

In a shared memory multiprocessor system with a separate cache memory for each

processor, it is possible to have many copies of shared data: one copy in the main

memory and one in the local cache of each processor that requested it. When one

of the copies of data is changed, the other copies must reflect that change. Cache

coherence is the discipline which ensures that the changes in the values of shared

operands (data) are propagated throughout the system in a timely fashion.
[1]

The following are the requirements for cache coherence:
[2]

Write Propagation

Changes to the data in any cache must be propagated to other copies (of that

cache line) in the peer caches.

Transaction Serialization

Reads/Writes to a single memory location must be seen by all processors in

the same order.

Theoretically, coherence can be performed at the load/store granularity.

However, in practice it is generally performed at the granularity of cache

blocks.

Definition

Coherence defines the behavior of reads and writes to a single address

location.

One type of data occurring simultaneously in different cache memory is

called cache coherence, or in some systems, global memory.

In a multiprocessor system, consider that more than one processor has

cached a copy of the memory location X. The following conditions are

necessary to achieve cache coherence:

1. In a read made by a processor P to a location X that follows a write

by the same processor P to X, with no writes to X by another

processor occurring between the write and the read instructions made

by P, X must always return the value written by P.

2. In a read made by a processor P1 to location X that follows a write

by another processor P2 to X, with no other writes to X made by any

processor occurring between the two accesses and with the read and

write being sufficiently separated, X must always return the value

written by P2. This condition defines the concept of coherent view of

https://en.wikipedia.org/wiki/Shared_memory_architecture
https://en.wikipedia.org/wiki/Cache_coherence#cite_note-:1-1
https://en.wikipedia.org/wiki/Cache_coherence#cite_note-:0-2
https://en.wikipedia.org/wiki/Granularity

memory. Propagating the writes to the shared memory location

ensures that all the caches have a coherent view of the memory. If

processor P1 reads the old value of X, even after the write by P2, we

can say that the memory is incoherent.

The above conditions satisfy the Write Propagation criteria required for

cache coherence. However, they are not sufficient as they do not satisfy the

Transaction Serialization condition. To illustrate this better, consider the

following example:

A multi-processor system consists of four processors - P1, P2, P3 and P4, all

containing cached copies of a shared variable S whose initial value is 0.

Processor P1 changes the value of S (in its cached copy) to 10 following

which processor P2 changes the value of S in its own cached copy to 20. If

we ensure only write propagation, then P3 and P4 will certainly see the

changes made to S by P1 and P2. However, P3 may see the change made by

P1 after seeing the change made by P2 and hence return 10 on a read to S.

P4 on the other hand may see changes made by P1 and P2 in the order in

which they are made and hence return 20 on a read to S. The processors P3

and P4 now have an incoherent view of the memory.

As multiple processors operate in parallel, and independently multiple caches may

possess different copies of the same memory block, this creates cache coherence

problem. Cache coherence schemes help to avoid this problem by maintaining a

uniform state for each cached block of data.

Let X be an element of shared data which has been referenced by two processors,

P1 and P2. In the beginning, three copies of X are consistent. If the processor P1

writes a new data X1 into the cache, by using write-through policy, the same

copy will be written immediately into the shared memory. In this case,

inconsistency occurs between cache memory and the main memory. When

a write-back policy is used, the main memory will be updated when the modified

data in the cache is replaced or invalidated.

In general, there are three sources of inconsistency problem −

 Sharing of writable data

 Process migration

 I/O activity

Therefore, in order to satisfy Transaction Serialization, and hence achieve

Cache Coherence, the following condition along with the previous two

mentioned in this section must be met:

 Writes to the same location must be sequenced. In other words, if

location X received two different values A and B, in this order, from any

two processors, the processors can never read location X as B and then

read it as A. The location X must be seen with values A and B in that

order.

The alternative definition of a coherent system is via the definition

of sequential consistency memory model: "the cache coherent system must

appear to execute all threads’ loads and stores to a single memory location

in a total order that respects the program order of each thread". Thus, the

only difference between the cache coherent system and sequentially

consistent system is in the number of address locations the definition talks

about (single memory location for a cache coherent system, and all memory

locations for a sequentially consistent system).

Another definition is: "a multiprocessor is cache consistent if all writes to

the same memory location are performed in some sequential order".

Rarely, but especially in algorithms, coherence can instead refer to

the locality of reference. Multiple copies of same data can exist in different

cache simultaneously and if processors are allowed to update their own

copies freely, an inconsistent view of memory can result.

Coherence mechanisms

The two most common mechanisms of ensuring coherency

are snooping and directory-based, each having their own benefits and

https://en.wikipedia.org/wiki/Sequential_consistency
https://en.wikipedia.org/wiki/Locality_of_reference
https://en.wikipedia.org/wiki/Bus_sniffing
https://en.wikipedia.org/wiki/Directory-based_cache_coherence

drawbacks. Snooping based protocols tend to be faster, if

enough bandwidth is available, since all transactions are a request/response

seen by all processors. The drawback is that snooping isn't scalable. Every

request must be broadcast to all nodes in a system, meaning that as the

system gets larger, the size of the (logical or physical) bus and the

bandwidth it provides must grow. Directories, on the other hand, tend to

have longer latencies (with a 3 hop request/forward/respond) but use much

less bandwidth since messages are point to point and not broadcast. For this

reason, many of the larger systems (>64 processors) use this type of cache

coherence.

Snooping

Main article: Bus snooping

First introduced in 1983, snooping is a process where the individual caches

monitor address lines for accesses to memory locations that they have

cached. The write-invalidate protocols and write-update protocols make use

of this mechanism.

For the snooping mechanism, a snoop filter reduces the snooping traffic by

maintaining a plurality of entries, each representing a cache line that may be

owned by one or more nodes. When replacement of one of the entries is

required, the snoop filter selects for the replacement the entry representing

the cache line or lines owned by the fewest nodes, as determined from a

presence vector in each of the entries. A temporal or other type of algorithm

is used to refine the selection if more than one cache line is owned by the

fewest nodes.

Directory-based

Main article: Directory-based cache coherence

In a directory-based system, the data being shared is placed in a common

directory that maintains the coherence between caches. The directory acts as

a filter through which the processor must ask permission to load an entry

https://en.wikipedia.org/wiki/Memory_bandwidth
https://en.wikipedia.org/wiki/Bus_snooping
https://en.wikipedia.org/wiki/Directory-based_cache_coherence

from the primary memory to its cache. When an entry is changed, the

directory either updates or invalidates the other caches with that entry.

Distributed shared memory systems mimic these mechanisms in

an attempt to maintain consistency between blocks of memory in

loosely coupled systems.

Hardware Synchronization Mechanisms

Synchronization is a special form of communication where instead of data control,

information is exchanged between communicating processes residing in the same

or different processors.

Multiprocessor systems use hardware mechanisms to implement low-level

synchronization operations. Most multiprocessors have hardware mechanisms to

impose atomic operations such as memory read, write or read-modify-write

operations to implement some synchronization primitives. Other than atomic

memory operations, some inter-processor interrupts are also used for

synchronization purposes.

Cache Coherency in Shared Memory Machines

Maintaining cache coherency is a problem in multiprocessor system when the

processors contain local cache memory. Data inconsistency between different

caches easily occurs in this system.

The major concern areas are −

 Sharing of writable data

 Process migration

 I/O activity

Sharing of writable data

When two processors (P1 and P2) have same data element (X) in their local

caches and one process (P1) writes to the data element (X), as the caches are

write-through local cache of P1, the main memory is also updated. Now when P2

tries to read data element (X), it does not find X because the data element in the

cache of P2 has become outdated.

https://en.wikipedia.org/wiki/Distributed_shared_memory

Process migration

In the first stage, cache of P1 has data element X, whereas P2 does not have

anything. A process on P2 first writes on X and then migrates to P1. Now, the

process starts reading data element X, but as the processor P1 has outdated data

the process cannot read it. So, a process on P1 writes to the data element X and

then migrates to P2. After migration, a process on P2 starts reading the data

element X but it finds an outdated version of X in the main memory.

I/O activity

As illustrated in the figure, an I/O device is added to the bus in a two-processor

multiprocessor architecture. In the beginning, both the caches contain the data

element X. When the I/O device receives a new element X, it stores the new

element directly in the main memory. Now, when either P1 or P2 (assume P1)

tries to read element X it gets an outdated copy. So, P1 writes to element X. Now,

if I/O device tries to transmit X it gets an outdated copy.

Uniform Memory Access (UMA)

Uniform Memory Access (UMA) architecture means the shared memory is the

same for all processors in the system. Popular classes of UMA machines, which

are commonly used for (file-) servers, are the so-called Symmetric

Multiprocessors (SMPs). In an SMP, all system resources like memory, disks,

other I/O devices, etc. are accessible by the processors in a uniform manner.

Non-Uniform Memory Access (NUMA)

In NUMA architecture, there are multiple SMP clusters having an internal

indirect/shared network, which are connected in scalable message-passing

network. So, NUMA architecture is logically shared physically distributed

memory architecture.

In a NUMA machine, the cache-controller of a processor determines whether a

memory reference is local to the SMP’s memory or it is remote. To reduce the

number of remote memory accesses, NUMA architectures usually apply caching

processors that can cache the remote data. But when caches are involved, cache

coherency needs to be maintained. So these systems are also known as CC-

NUMA (Cache Coherent NUMA).

Cache Only Memory Architecture (COMA)

COMA machines are similar to NUMA machines, with the only difference that

the main memories of COMA machines act as direct-mapped or set-associative

caches. The data blocks are hashed to a location in the DRAM cache according to

their addresses. Data that is fetched remotely is actually stored in the local main

memory. Moreover, data blocks do not have a fixed home location, they can

freely move throughout the system.

COMA architectures mostly have a hierarchical message-passing network. A

switch in such a tree contains a directory with data elements as its sub-tree. Since

data has no home location, it must be explicitly searched for. This means that a

remote access requires a traversal along the switches in the tree to search their

directories for the required data. So, if a switch in the network receives multiple

requests from its subtree for the same data, it combines them into a single request

which is sent to the parent of the switch. When the requested data returns, the

switch sends multiple copies of it down its subtree.

COMA versus CC-NUMA

Following are the differences between COMA and CC-NUMA.

 COMA tends to be more flexible than CC-NUMA because COMA

transparently supports the migration and replication of data without the

need of the OS.

 COMA machines are expensive and complex to build because they need

non-standard memory management hardware and the coherency protocol is

harder to implement.

 Remote accesses in COMA are often slower than those in CC-NUMA since

the tree network needs to be traversed to find the data.

