
Advance Cache optimization 

I would review some of the optimizations to improve cache performance based on 

metrics like hit time, miss rate, miss penalty, cache bandwidth and power 

consumption. Most of the techniques described below would be based on hardware 

while some will rely on software/programming techniques. I would start by 

reviewing in depth about the software technique, mainly Compiler Optimizations 

and then go on to review other hardware-based optimizations. 

Compiler Optimizations 

The technique relies on optimization of software rather than hardware. The two 

techniques that we are going to discuss are Loop Interchange and Blocking. 

Loop Interchange 

Some programs have nested loops that access data in memory in nonsequential 

order. Simply exchanging the nesting of the loops can make the code access the 

data in the order in which they are stored. Since the arrays are laid out in row-major 

fashion accessing them in different ways can affect miss rate greatly. 

/* BEFORE */ 

for (j = 0; j < 100; j++) 

   for (i = 0; i < 5000; i++) 

      x[i][j] = 2*x[i][j]/* AFTER */ 

for (i = 0; j < 5000; j++) 

   for (j = 0; i < 100; j++) 

      x[i][j] = 2*x[i][j] 

The original code would skip through memory in strides of 100 words, while the 

revised version accesses all the words in one cache block before going to the next 

block. This optimization improves cache performance without affecting the number 

of instructions executed. 

Blocking 

This optimization improves temporal locality to reduce misses. When we need to 

deal with multiple arrays, with some arrays accessed by rows and some by columns, 



storing in a specific way doesn’t solve the problem. Such orthogonal accesses mean 

that transformations such as loop interchange still leave plenty of room for 

improvement. Consider the example code given below. 

/* Before */ 

for (i = 0; i < N; i++) 

   for (j = 0; j < N; j++) 

   { 

       r = 0; 

       for (k = 0; k < N; k++) 

          r = r + y[i][k]*z[k][j]; 

       x[i][j] = r; 

   } 

The number of capacity misses clearly depends on N and the size of the cache. 

If it can hold all three N-by-N matrices, then all is well, provided there are no 

cache conflicts. If the cache can hold one N-by-N matrix and one row of N, then at 

least the ith row of y and the array z may stay in the cache. Less than that and 

misses may occur for both x and z. In the worst case, there would be 2N³+N² 

memory words accessed for N³ operations. 

 

 

Access Pattern: Naive Implementation for matrix multiplication 

Instead of operating on entire rows or columns of an array, blocked algorithms 

operate on submatrices or blocks. The goal is to maximize accesses 

to the data loaded into the cache before the data are replaced. To ensure that the 

elements being accessed can fit in the cache, the original code is changed to 

compute on a submatrix of size B by B. Two inner loops now compute in steps of 

size B rather than the full length of x and z. B is called the blocking factor. 



/* After */ 

for (jj = 0; jj < N; jj = jj + B) 

   for (kk = 0; kk < N; kk = kk + B) 

      for (i = 0; i < N; i++) 

         for (j = jj; j < min(jj+B, N); j++) 

         { 

             r = 0; 

             for (k = kk; k < min(kk+B, N); k++) 

                r = r + y[i][k]*z[k][j]; 

             x[i][j] = r + x[i][j]; 

         } 

Looking only at capacity misses, the total number of memory words accessed is 

2N³/B+ N². This total is an improvement by about a factor of B. Hence, blocking 

exploits a combination of spatial and temporal locality, since y benefits from the 

spatial locality and z benefits from the temporal locality. 

 

 

Access Patterns: Matrix multiplication using blocking algorithm 

I have summarised the results of the above example for different values of N and B 

in the graph below, which illustrates the better cache utilisation in case of blocking 

algorithm as compared to simple matrix multiplication algorithm. 

 



 

Graphical Representation: Blocking Effect 

Small and Simple First-Level Caches 

The cache hit is a three-step process of addressing tag memory, comparing the read 

tag value to the address and setting the multiplexor to choose the correct data item 

for associative caches. Since direct-mapped caches can overlap the tag check with 

the transmission of data, it reduces the hit time. Also, lower levels of associativity 

reduce power consumption since a fewer number of cache lines needs to be 

accessed. 

 



 

 

Energy consumption per read 

Way Prediction 

In way prediction, extra bits are kept in the cache to predict 

the way, or block within the set of the next cache access. This prediction means the 

multiplexor is set early to select the desired block, and only a single tag comparison 

is performed that clock cycle in parallel with reading the cache data. A miss results 

in checking the other blocks for matches in the next clock cycle. Added to each 

block of a cache are block predictor bits. The bits select which of the blocks to try 

on the next cache access. If the predictor is correct, the cache access latency is the 

fast hit time. If not, it tries the other block, changes the way predictor, and has a 

latency of one extra clock cycle. This approach reduces conflict misses and yet 

maintains the hit speed of 

direct-mapped cache. 

Pipelined Cache Access 



This optimization is simply to pipeline cache access so that the effective latency of 

a first-level cache hit can be multiple clock cycles, giving fast clock cycle time and 

high bandwidth but slow hits. This change increases the number of pipeline stages, 

leading to a greater penalty on mispredicted branches and more clock cycles 

between issuing the load and using the data, but it does make it easier to incorporate 

high degrees of associativity. 

Non Blocking Caches 

For pipelined computers that allow out-of-order execution, the processor need not 

stall on a data cache miss. A nonblocking cache or lockup-free cache escalates the 

potential benefits of such a scheme by allowing the data cache to continue to supply 

cache hits during a miss. This optimization reduces the effective miss penalty by 

being helpful during a miss instead of ignoring the requests of the processor. 

 

 

The effectiveness of a nonblocking cache is evaluated by allowing 1, 2, or 

64 hits under a cache miss with 9 SPECINT (on the left) and 9 SPECFP (on the 

right) 

Multibanked Caches 

According to this concept, we can divide cache into independent banks that can 

support simultaneous accesses rather than treating cache as a single monolithic 

block. Banking works best when the accesses naturally spread themselves across 

the banks, so the mapping of addresses to banks affects the behaviour of the 



memory system. A simple mapping that works well is to spread the addresses of the 

block sequentially across the banks, called sequential interleaving. 

Critical Word First and Early Restart 

This technique is based on the observation that the processor normally needs just 

one word of the block at a time. With this approach, the processor doesn’t wait for 

the full block to be loaded before sending the requested word and starting the 

processor. These techniques only benefit designs with large cache blocks. Two 

specific strategies are Critical word first and Early restart. 

 Critical word first requests the missed word first from memory and send it to 

the processor as soon as it arrives; let the processor continue execution while 

filling the rest of the words in the block. 

 Early Restart fetches the words in normal order, but as soon as the requested 

word of the block arrives send it to the processor and let the processor continue 

execution. 

Merging Write Buffer 

Write buffers are the basis of write-through caches. Furthermore, even write-back 

caches use a simple buffer for block replacement. In this idea, if the buffer contains 

other modified blocks, the addresses can be checked to see if the address of the new 

data matches the address of a valid write buffer entry. If so, the new data are 

combined with that entry. 

Hardware Prefetching of Instructions and Data 

This idea mainly emphasizes the ability to prefetch data and instructions form the 

main memory before they are requested by the processor. If prefetching is done 

correctly then the miss rate can be reduced significantly. 

 



 

Speedup due to hardware prefetching on Intel Pentium 4 with hardware prefetching 

Compiler-Controlled Prefetching 

An alternative to hardware prefetching is for the compiler to insert prefetch 

instructions to request data before the processor needs it. This can be done in two 

ways: 

 Register prefetch will load the value into a register 

 Cache prefetch loads data only into the cache and not the register. 

This helps in reducing the miss rate in the same way as prefetching but with greater 

accuracy since the loaded blocks are hard coded by the compiler with certainty. 

Conclusion 

The techniques to improve hit time, bandwidth, miss penalty, and miss rate 

generally affect the other components of the average memory access equation as 

well as the complexity of the memory hierarchy. The existing techniques have been 

performing well but still the constantly evolving world Computer Architecture 



needs even better optimization techniques to cope up with the ever increasing 

demand for improvedperformance. 

 


