
Multi-threaded Architecture

In computer architecture, multithreading is the ability of a central processing

unit (CPU) (or a single core in a multi-core processor) to provide multiple threads

of execution concurrently, supported by the operating system. This approach

differs from multiprocessing. In a multithreaded application, the threads share the

resources of a single or multiple cores, which include the computing units,

the CPU caches, and the translation lookaside buffer (TLB).

Where multiprocessing systems include multiple complete processing units in one

or more cores, multithreading aims to increase utilization of a single core by

using thread-level parallelism, as well as instruction-level parallelism. As the two

techniques are complementary, they are sometimes combined in systems with

multiple multithreading CPUs and with CPUs with multiple multithreading cores.

The multithreading paradigm has become more popular as efforts to further

exploit instruction-level parallelism have stalled since the late 1990s. This allowed

the concept of throughput computing to re-emerge from the more specialized field

of transaction processing. Even though it is very difficult to further speed up a

single thread or single program, most computer systems are actually multitasking

among multiple threads or programs. Thus, techniques that improve the throughput

of all tasks result in overall performance gains.

Two major techniques for throughput computing

are multithreading and multiprocessing.

Advantages

If a thread gets a lot of cache misses, the other threads can continue taking

advantage of the unused computing resources, which may lead to faster overall

https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Thread-level_parallelism
https://en.wikipedia.org/wiki/Instruction-level_parallelism
https://en.wikipedia.org/wiki/Paradigm
https://en.wikipedia.org/wiki/Instruction-level_parallelism
https://en.wikipedia.org/wiki/Throughput_computing
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/CPU_cache#Cache_miss

execution, as these resources would have been idle if only a single thread were

executed. Also, if a thread cannot use all the computing resources of the CPU

(because instructions depend on each other's result), running another thread may

prevent those resources from becoming idle.

Disadvantages

Multiple threads can interfere with each other when sharing hardware resources

such as caches or translation lookaside buffers (TLBs). As a result, execution times

of a single thread are not improved and can be degraded, even when only one

thread is executing, due to lower frequencies or additional pipeline stages that are

necessary to accommodate thread-switching hardware.

Overall efficiency varies; Intel claims up to 30% improvement with its Hyper-

Threading Technology,
[1]

 while a synthetic program just performing a loop of non-

optimized dependent floating-point operations actually gains a 100% speed

improvement when run in parallel. On the other hand, hand-tuned assembly

language programs using MMX or AltiVec extensions and performing data pre-

fetches (as a good video encoder might) do not suffer from cache misses or idle

computing resources. Such programs therefore do not benefit from hardware

multithreading and can indeed see degraded performance due to contention for

shared resources.

Types of multithreading

Interleaved/Temporal multithreading

Coarse-grained multithreading

The simplest type of multithreading occurs when one thread runs until it is blocked

by an event that normally would create a long-latency stall. Such a stall might be a

https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Hyper-Threading_Technology
https://en.wikipedia.org/wiki/Hyper-Threading_Technology
https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)#cite_note-1
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/MMX_(instruction_set)
https://en.wikipedia.org/wiki/AltiVec
https://en.wikipedia.org/wiki/Temporal_multithreading

cache miss that has to access off-chip memory, which might take hundreds of CPU

cycles for the data to return. Instead of waiting for the stall to resolve, a threaded

processor would switch execution to another thread that was ready to run. Only

when the data for the previous thread had arrived, would the previous thread be

placed back on the list of ready-to-run threads.

For example:

1. Cycle i: instruction j from thread A is issued.

2. Cycle i + 1: instruction j + 1 from thread A is issued.

3. Cycle i + 2: instruction j + 2 from thread A is issued, which is a load

instruction that misses in all caches.

4. Cycle i + 3: thread scheduler invoked, switches to thread B.

5. Cycle i + 4: instruction k from thread B is issued.

6. Cycle i + 5: instruction k + 1 from thread B is issued.

Conceptually, it is similar to cooperative multi-tasking used in real-time operating

systems, in which tasks voluntarily give up execution time when they need to wait

upon some type of the event. This type of multithreading is known as block,

cooperative or coarse-grained multithreading.

Interleaved multithreading

The purpose of interleaved multithreading is to remove all data dependency stalls

from the execution pipeline. Since one thread is relatively independent from other

threads, there is less chance of one instruction in one pipelining stage needing an

output from an older instruction in the pipeline. Conceptually, it is similar

to preemptive multitasking used in operating systems; an analogy would be that the

time slice given to each active thread is one CPU cycle.

For example:

1. Cycle i + 1: an instruction from thread B is issued.

2. Cycle i + 2: an instruction from thread C is issued.

This type of multithreading was first called barrel processing, in which the staves

of a barrel represent the pipeline stages and their executing threads. Interleaved,

preemptive, fine-grained or time-sliced multithreading are more modern

terminology.

In addition to the hardware costs discussed in the block type of multithreading,

interleaved multithreading has an additional cost of each pipeline stage tracking the

thread ID of the instruction it is processing. Also, since there are more threads

https://en.wikipedia.org/wiki/Process_state#Ready
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Data_dependency
https://en.wikipedia.org/wiki/Pipeline_(computing)
https://en.wikipedia.org/wiki/Preemption_(computing)

being executed concurrently in the pipeline, shared resources such as caches and

TLBs need to be larger to avoid thrashing between the different threads.

Simultaneous multithreading

The most advanced type of multithreading applies to superscalar processors.

Whereas a normal superscalar processor issues multiple instructions from a single

thread every CPU cycle, in simultaneous multithreading (SMT) a superscalar

processor can issue instructions from multiple threads every CPU cycle.

Recognizing that any single thread has a limited amount of instruction-level

parallelism, this type of multithreading tries to exploit parallelism available across

multiple threads to decrease the waste associated with unused issue slots.

For example:

1. Cycle i: instructions j and j + 1 from thread A and instruction k from

thread B are simultaneously issued.

2. Cycle i + 1: instruction j + 2 from thread A, instruction k + 1 from thread B,

and instruction m from thread C are all simultaneously issued.

3. Cycle i + 2: instruction j + 3 from thread A and instructions m + 1 and m +

2 from thread C are all simultaneously issued.

To distinguish the other types of multithreading from SMT, the term "temporal

multithreading" is used to denote when instructions from only one thread can be

issued at a time.

https://en.wikipedia.org/wiki/Superscalar_processor
https://en.wikipedia.org/wiki/Instruction-level_parallelism
https://en.wikipedia.org/wiki/Instruction-level_parallelism
https://en.wikipedia.org/wiki/Temporal_multithreading
https://en.wikipedia.org/wiki/Temporal_multithreading

