
Instruction Level Parallelism

Pipelining can overlap the execution of instructions when they are independent of

one another. This potential overlap among instructions is called instruction-level

parallelism (ILP) since the instructions can be evaluated in parallel.

The amount of parallelism available within a basic block (a straight-line code

sequence with no branches in and out except for entry and exit) is quite small. The

average dynamic branch frequency in integer programs was measured to be about

15%, meaning that about 7 instructions execute between a pair of branches.

Since the instructions are likely to depend upon one another, the amount of overlap

we can exploit within a basic block is likely to be much less than 7.

To obtain substantial performance enhancements, we must exploit ILP across

multiple basic blocks.

The simplest and most common way to increase the amount of parallelism

available among instructions is to exploit parallelism among iterations of a loop.

This type of parallelism is often called loop-level parallelism.

Example 1

for (i=1; i<=1000; i= i+1)

 x[i] = x[i] + y[i];

This is a parallel loop. Every iteration of the loop can overlap with any other

iteration, although within each loop iteration there is little opportunity for overlap.

Example 2

for (i=1; i<=100; i= i+1){

 a[i] = a[i] + b[i]; //s1

 b[i+1] = c[i] + d[i]; //s2

}

Is this loop parallel? If not how to make it parallel?

Statement s1 uses the value assigned in the previous iteration by statement s2, so

there is a loop-carried dependency between s1 and s2. Despite this dependency,

this loop can be made parallel because the dependency is not circular:

 - neither statement depends on itself;

 - while s1 depends on s2, s2 does not depend on s1.

A loop is parallel unless there is a cycle in the dependecies, since the absence of a

cycle means that the dependencies give a partial ordering on the statements.

To expose the parallelism the loop must be transformed to conform to the partial

order. Two observations are critical to this transformation:

There is no dependency from s1 to s2. Then, interchanging the two statements

will not affect the execution of s2.

On the first iteration of the loop, statement s1 depends on the value

of b[1] computed prior to initiating the loop.

This allows us to replace the loop above with the following code sequence, which

makes possible overlapping of the iterations of the loop:

a[1] = a[1] + b[1];

for (i=1; i<=99; i= i+1){

 b[i+1] = c[i] + d[i];

 a[i+1] = a[i+1] + b[i+1];

}

b[101] = c[100] + d[100];

Example 3

for (i=1; i<=100; i= i+1){

 a[i+1] = a[i] + c[i]; //S1

 b[i+1] = b[i] + a[i+1]; //S2

}

This loop is not parallel because it has cycles in the dependencies, namely the

statements S1 and S2 depend on themselves!

There are a number of techniques for converting such loop-level parallelism into

instruction-level parallelism. Basically, such techniques work by unrolling the

loop.

http://web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/loopUnrolling.html
http://web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/loopUnrolling.html

