
Dynamic Programming

 Similar to divide-and-conquer, it breaks problems down into smaller problems

that are solved recursively.

 In contrast, DP is applicable when the sub-problems are not independent, i.e.

when sub-problems share sub-sub-problems. It solves every sub-sub-problem

just once and save the results in a table to avoid duplicated computation.

Elements of DP Algorithms

 Sub-structure: decompose problem into smaller sub-problems. Express the

solution of the original problem in terms of solutions for smaller problems.

 Table-structure: Store the answers to the sub-problem in a table, because

sub-problem solutions may be used many times.

 Bottom-up computation: combine solutions on smaller sub-problems to solve

larger sub-problems, and eventually arrive at a solution to the complete

problem.

Applicability to Optimization Problems

 Optimal sub-structure (principle of optimality): for the global problem to be

solved optimally, each sub-problem should be solved optimally. This is often

violated due to sub-problem overlaps. Often by being “less optimal” on one

problem, we may make a big savings on another sub-problem.

 Small number of sub-problems: Many NP-hard problems can be formulated as

DP problems, but these formulations are not efficient, because the number of

sub-problems is exponentially large. Ideally, the number of sub-problems

should be at most a polynomial number.

Example of DP:

 Knapsack Problem

 The All-Pairs Shortest Paths Problem- Floyd-Warshall
 Longest common subsequence

 Sum of subset probelm

