

 (i) Fine-Grained SIMD:

These are actually the detailed description which deals with the much smaller

components which are in actual is composed of the much larger components.

(ii) Coarse-Grained SIMD:

These systems are consisting of fewer components which are obviously more than

the original one but are much lesser than the Fine-Grained SIMD, but the size of

components is much more (high/more) than the fine-grained subcomponents of a

system.

Difference between Fine-Grained and Coarse-Grained SIMD Architecture:

S.NO. FINE-GRAINED SIMD

COARSE-GRAINED

SIMD

1.

Fine Grain SIMD have

less computation time

then the coarse grain

architecture.

Coarse Grain SIMD have

more computation time

then the Fine grain

architecture.

2.

Here, programs are

broken into large number

of small tasks.

Here, programs are

broken into small number

of large task.

3

Fine Grain SIMD have

much higher level of

parallelism then Coarse

Coarse grain SIMD have

lower level of parallelism

then Fine Grain SIMD.

grain SIMD.

4.

Here, Grain Size is over

1000 instructions.

Here, Grain Size in range

of 2-500 instructions.

5.

Here, the size of

subcomponents is much

smaller than the Coarse

grained.

Here, the size of

subcomponents is more

than the Fine-Grained.

6.

Here, two types of

parallelism can be

obtained –

a) Instruction Level

Parallelism

b) Loop Level Parallelism

Here, these two types of

parallelism can be

obtained –

a) Sub-program

b) Program Level

Parallelism

7.

In Fine Grain SIMD,

Load Balancing is proper.

In Coarse Grain SIMD,

Load Balancing is

improper.

8.

Here Parallelism can be

detected using compiler.

Here Parallelism can’t be

detected using compiler.

9.

Fine Grain SIMD is a

much costlier process than

the Coarse Grain SIMD.

Coarse Grain SIMD is

much cheaper than the

Fine Grain SIMD.

10.

Fine Grain is the concept

of future multi-threaded

architectures to be used in

the future also.

Coarse Grain is in one of

the earlier concepts of

single-threaded

architectures.

11.

The Detailed description

is further divided into

many small

subcomponents and

makes the processes less

complex from the original

one and from the coarse-

grained also.

The Detailed description

is divided into large

subcomponents and

makes the processes less

complex than the original

one but more complex

than Fine-Grained.

12.

Examples –

Connection Machine

(CM-2), J-Machine, etc.

Examples –

CRAY Y, etc.

In parallel computing, granularity (or grain size) of a task is a measure of the

amount of work (or computation) which is performed by that task.
[1]

Another definition of granularity takes into account the

communication overhead between multiple processors or processing elements. It

defines granularity as the ratio of computation time to communication time,

wherein, computation time is the time required to perform the computation of a

task and communication time is the time required to exchange data between

processors.
[2]

If Tcomp is the computation time and Tcomm denotes the communication time,

then the Granularity G of a task can be calculated as:

G=Tcomp/Tcomm

Granularity is usually measured in terms of the number of instructions

executed in a particular task. Alternately, granularity can also be specified in

terms of the execution time of a program, combining the computation time

and communication time.

Types of parallelism

Depending on the amount of work which is performed by a parallel task,

parallelism can be classified into three categories: fine-grained, medium-grained

and coarse-grained parallelism.

Fine-grained parallelism

In fine-grained parallelism, a program is broken down to a large number of small

tasks. These tasks are assigned individually to many processors. The amount of

work associated with a parallel task is low and the work is evenly distributed

among the processors. Hence, fine-grained parallelism facilitates load balancing

As each task processes less data, the number of processors required to perform the

complete processing is high. This in turn, increases the communication and

synchronization overhead.

Fine-grained parallelism is best exploited in architectures which support fast

communication. Shared memory architecture which has a low communication

overhead is most suitable for fine-grained parallelism.

https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Granulation
https://en.wikipedia.org/wiki/Task_(computing)
https://en.wikipedia.org/wiki/Granularity_(parallel_computing)#cite_note-hwang-1
https://en.wikipedia.org/wiki/Overhead_(computing)
https://en.wikipedia.org/wiki/Granularity_(parallel_computing)#cite_note-Kwiatkowski-2
https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://en.wikipedia.org/wiki/Shared_memory

It is difficult for programmers to detect parallelism in a program, therefore, it is

usually the compilers' responsibility to detect fine-grained parallelism.

An example of a fine-grained system (from outside the parallel computing domain)

is the system of neurons in our brain.

Connection Machine (CM-2) and J-Machine are examples of fine-grain parallel

computers that have grain size in the range of 4-5 μs.

 Coarse-grained parallelism

In coarse-grained parallelism, a program is split into large tasks. Due to this, a

large amount of computation takes place in processors. This might result in load

imbalance, wherein certain tasks process the bulk of the data while others might be

idle. Further, coarse-grained parallelism fails to exploit the parallelism in the

program as most of the computation is performed sequentially on a processor. The

advantage of this type of parallelism is low communication and synchronization

overhead.

Message-passing architecture takes a long time to communicate data among

processes which makes it suitable for coarse-grained parallelism.
[1]

Cray Y-MP is an example of coarse-grained parallel computer which has a grain

size of about 20s.
[1]

Medium-grained parallelism

Medium-grained parallelism is used relatively to fine-grained and coarse-grained

parallelism. Medium-grained parallelism is a compromise between fine-grained

and coarse-grained parallelism, where we have task size and communication time

greater than fine-grained parallelism and lower than coarse-grained parallelism.

Most general-purpose parallel computers fall in this category.
[4]

Intel iPSC is an example of medium-grained parallel computer which has a grain

size of about 10ms.
[1]

Example

Consider a 10*10 image that needs to be processed, given that, processing of the

100 pixels is independent of each other.

Fine-grained parallelism: Assume there are 100 processors that are responsible

for processing the 10*10 image. Ignoring the communication overhead, the 100

processors can process the 10*10 image in 1 clock cycle. Each processor is

working on 1 pixel of the image and then communicates the output to other

processors. This is an example of fine-grained parallelism.

https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Neurons
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Connection_Machine
https://en.wikipedia.org/wiki/J-Machine
https://en.wikipedia.org/wiki/Message-passing
https://en.wikipedia.org/wiki/Granularity_(parallel_computing)#cite_note-hwang-1
https://en.wikipedia.org/wiki/Cray_Y-MP
https://en.wikipedia.org/wiki/Granularity_(parallel_computing)#cite_note-hwang-1
https://en.wikipedia.org/wiki/Granularity_(parallel_computing)#cite_note-Russ-4
https://en.wikipedia.org/wiki/Intel_iPSC
https://en.wikipedia.org/wiki/Granularity_(parallel_computing)#cite_note-hwang-1

Medium-grained parallelism: Consider that there are 25 processors processing

the 10*10 image. The processing of the image will now take 4 clock cycles. This is

an example of medium-grained parallelism.

Coarse-grained parallelism: Further, if we reduce the processors to 2, then the

processing will take 50 clock cycles. Each processor need to process 50 elements

which increases the computation time, but the communication overhead decreases

as the number of processors which share data decreases. This case illustrates

coarse-grained parallelism.

Fine-grain : Pseudocode

for 100 processors

Medium-grain :

Pseudocode for 25

processors

Coarse-grain :

Pseudocode for 2

processors

void main()

{

 switch (Processor_ID)

 {

 case 1: Compute

element 1; break;

 case 2: Compute

element 2; break;

 case 3: Compute

element 3; break;

 .

 .

 .

 .

 case 100: Compute

element 100;

 break;

 }

}

void main()

{

 switch (Processor_ID)

 {

 case 1: Compute

elements 1-4; break;

 case 2: Compute

elements 5-8; break;

 case 3: Compute

elements 9-12; break;

 .

 .

 case 25: Compute

elements 97-100;

 break;

 }

}

void main()

{

 switch (Processor_ID)

 {

 case 1: Compute

elements 1-50;

 break;

 case 2: Compute

elements 51-100;

 break;

 }

}

Computation time - 1

clock cycle

Computation time - 4

clock cycles

Computation time - 50

clock cycles

Levels of parallelism

Granularity is closely tied to the level of processing. A program can be broken

down into 4 levels of parallelism -

1. Instruction level.

2. Loop level

3. Sub-routine level and

4. Program-level

The highest amount of parallelism is achieved at instruction level, followed

by loop-level parallelism. At instruction and loop level, fine-grained parallelism is

achieved. Typical grain size at instruction-level is 20 instructions, while the grain-

size at loop-level is 500 instructions.
[1]

At the sub-routine (or procedure) level the grain size is typically a few thousand

instructions. Medium-grained parallelism is achieved at sub-routine level.
[1]

At program-level, parallel execution of programs takes place. Granularity can be

in the range of tens of thousands of instructions.
[1]

 Coarse-grained parallelism is

used at this level.

The below table shows the relationship between levels of parallelism, grain size

and degree of parallelism

Levels Grain Size Parallelism

Instruction level Fine Highest

Loop level Fine Moderate

Sub-routine level Medium Moderate

Program level Coarse Least

Impact of granularity on performance

https://en.wikipedia.org/wiki/Granularity_(parallel_computing)#cite_note-hwang-1
https://en.wikipedia.org/wiki/Granularity_(parallel_computing)#cite_note-hwang-1
https://en.wikipedia.org/wiki/Granularity_(parallel_computing)#cite_note-hwang-1

Granularity affects the performance of parallel computers. Using fine grains or

small tasks results in more parallelism and hence increases the speedup. However,

synchronization overhead, scheduling strategies etc. can negatively impact the

performance of fine-grained tasks. Increasing parallelism alone cannot give the

best performance.
[5]

In order to reduce the communication overhead, granularity can be increased.

Coarse grained tasks have less communication overhead but they often cause load

imbalance. Hence optimal performance is achieved between the two extremes of

fine-grained and coarse-grained parallelism.
[6]

Various studies have proposed their solution to help determine the best granularity

to aid parallel processing. Finding the best grain size depends on a number of

factors and varies greatly from problem-to-problem.

https://en.wikipedia.org/wiki/Speedup
https://en.wikipedia.org/wiki/Scheduling
https://en.wikipedia.org/wiki/Granularity_(parallel_computing)#cite_note-chen-5
https://en.wikipedia.org/wiki/Granularity_(parallel_computing)#cite_note-6

