
Parallel reduction

This can be applied for many problems, a min operation being just one of them. It

works by using half the number of threads of the elements in the dataset. Every

thread calculates the minimum of its own element and some other element. The

resultant element is forwarded to the next round. The number of threads is then

reduced by half and the process repeated until there is just a single element

remaining, which is the result of the operation.

With CUDA you must remember that the execution unit for a given SM is a warp.

Thus, any amount of threads less than one warp is underutilizing the hardware.

Also, while divergent threads must all be executed, divergent warps do not have to

be.

When selecting the “other element” for a given thread to work with, you can do so

to do a reduction within the warp, thus causing significant branch

divergence within it. This will hinder the performance, as each divergent branch

doubles the work for the SM. A better approach is to drop whole warps by

selecting the other element from the other half of the dataset.

In Figure 6.12 you see the item being compared with one from the other half of the

dataset. Shaded cells show the active threads.

Figure 6.12. Final stages of GPU parallel reduction.

// Uses multiple threads for reduction type merge

__device__ void merge_array5(const u32 ∗ const src_array,

 u32 ∗ const dest_array,

https://www.sciencedirect.com/topics/computer-science/branch-divergence
https://www.sciencedirect.com/topics/computer-science/branch-divergence

 const u32 num_lists,

 const u32 num_elements,

 const u32 tid)

{

 const u32 num_elements_per_list = (num_elements / num_lists);

 __shared__ u32 list_indexes[MAX_NUM_LISTS];

 __shared__ u32 reduction_val[MAX_NUM_LISTS];

 __shared__ u32 reduction_idx[MAX_NUM_LISTS];

 // Clear the working sets

 list_indexes[tid] = 0;

 reduction_val[tid] = 0;

 reduction_idx[tid] = 0;

 __syncthreads();

 for (u32 i=0; i<num_elements;i++)

 {

 // We need (num_lists / 2) active threads

 u32 tid_max = num_lists >> 1;

 u32 data;

 // If the current list has already been

 // emptied then ignore it

 if (list_indexes[tid] < num_elements_per_list)

 {

 // Work out from the list_index, the index into

 // the linear array

 const u32 src_idx = tid + (list_indexes[tid] ∗ num_lists);

 // Read the data from the list for the given

 // thread

 data = src_array[src_idx];

 }

 else

 {

 data = 0xFFFFFFFF;

 }

 // Store the current data value and index

 reduction_val[tid] = data;

 reduction_idx[tid] = tid;

 // Wait for all threads to copy

 __syncthreads();

 // Reduce from num_lists to one thread zero

 while (tid_max != 0)

 {

 // Gradually reduce tid_max from

 // num_lists to zero

 if (tid < tid_max)

 {

 // Calculate the index of the other half

 const u32 val2_idx = tid + tid_max;

 // Read in the other half

 const u32 val2 = reduction_val[val2_idx];

 // If this half is bigger

 if (reduction_val[tid] > val2)

 {

 // The store the smaller value

 reduction_val[tid] = val2;

 reduction_idx[tid] = reduction_idx[val2_idx];

 }

 }

 // Divide tid_max by two

 tid_max >>= 1;

 __syncthreads();

 }

 if (tid == 0)

 {

 // Incremenet the list pointer for this thread

 list_indexes[reduction_idx[0]]++;

 // Store the winning value

 dest_array[i] = reduction_val[0];

 }

 // Wait for tid zero

 __syncthreads();

 }

}

This code works by creating a temporary list of data in shared memory, which it

populates with a dataset from each cycle from the num_list datasets. Where a list

has already been emptied, the dataset is populated with 0xFFFFFFFF, which will

exclude the value from the list. The while loop gradually reduces the number of

active threads until there is only a single thread active, thread zero. This then

copies the data and increments the list indexes to ensure the value is not processed

twice.

