Hyper Quick Sort

Hyper quick sort is an implementation of quick sort on hypercube. Its
steps are as follows —

. Divide the unsorted list among each node.
. Sort each node locally.
. From node 0, broadcast the median value.

. Split each list locally, then exchange the halves across the highest
dimension.

. Repeat steps 3 and 4 in parallel until the dimension reaches O.

Algorithm

procedure HYPERQUICKSORT (B, n)
begin

id := process’s label;

fori:=1toddo
begin
X := pivot;

partition B into B1 and B2 such that B1 < x < B2;
if ith bit is O then

begin
send B2 to the process along the ith communication link;
C :=subsequence received along the ith communication link;
B:=B1UC;

endif

else
send B1 to the process along the ith communication link;
C :=subsequence received along the ith communication link;




B:=B2U C;
end else
end for
sort B using sequential quicksort;

end HYPERQUICKSORT

Hypercube

Formally, a hypercube of size n consists of n
processors indexed by the integers {0,1, . .., n -
1}, where n > 0 is an integral power of 2. Processors
A and B are connected if and only if their unique
log, n-bit strings differ in exactly one position.




Algorithm 1

We randomly choose a pivot from one of the processes and broadcast it to every
process.

Each process divides its unsorted list into two lists: those smaller than (or equal)
the pivot, those greater than the pivot.

Each process in the upper half of the process list sends its “low list” to a partner
process in the lower half of the process list and receives a “high list” in return.

Now, the upper-half processes have only values greater than The pivot, and the
lower-half processes have only values smaller than the pivot.

Thereafter, the processes divide themselves into two groups and the algorithm
recurses.

After logP recursions, every process has an unsorted list of values completely
disjoint from the values held by the other processes.

The largest value on process i will be smaller than the smallest value held by
processi+ 1.

Each process can sort its list using sequential quicksort.

Algorithm 2(My Implementation)

- Each process starts with a sequential quicksort on its local list.

- Now we have a better chance to choose a pivot that is close to the
true median.

- The process that is responsible for choosing the pivot can pick
the median of its local list.

» The three next steps of hyper quick sort are the same as in parallel
algorithm 1

Broadcast
Division of “low list” and high list”
Swap between partner processes
- The next step is different in hyper quick sort.

On each process, the remaining half of local list and the
received half-list are merged into a sorted local list.

» Recursion within upper-half processes and lower-half processes.



Expected Case Running Time

d(d+ 1)
O|Nlog N +———+dN ).

The N log N term represents the sequential running
time from Step 2. The d(d + 1)/2 term represents
the broadcast step used in Step 4. The dN term
represents the time required for the exchanging and
merging of the sets of elements.

Observations

Log P steps are needed in the recursion.

- The expected number of times a value is passed from
one process to another is log P / 2 , that 1s quite some
communication overhead!

« The median value chosen from a local segment may
still be quite different from the true median of the
entire list.

Although better than Parallel quicksort algorithm 1, load
imbalance may still arise.

Solution:
+ Algorithm 3 - parallel sorting by regular sampling

Limitations

The number of processors has to a be a power of 2.
Very High communication overhead.



