
Parallel Quicksort

Quick-sort works by selecting a pivot element, moving all elements less than (or

equal to) the pivot to one side, and the other elements to the other side of the array.

If there are more than one element in one of the two subsequences, it then

recursively calls itself passing the subsequence. This is quite easily parallelized by

starting a new process, thread or whatever for each recursion.

As the thread creation time2is far longer than the time to compare and exchange two
elements in most cases, the algorithm cannot start new threads for each partitioning.

Instead, the number of elements to be partitioned is compared to a hard-coded limit,
and if the number of elements is sufficiently large, it creates a new thread, otherwise it

just makes a recursive function call.

The algorithm given in table 3 is the one used for the string sorting measurements, and
it is slightly more optimized than the one used for integer sorting. P0...n-1 is an array of

pointers to the elements to be sorted, EPi refers to the element pointed to by Pi ,

and s is the parallel threshold.

Table 3: Parallel Quicksort.

http://www.osys.se/Archive/Papers/parallel-sort/node3.html#foot62
http://www.osys.se/Archive/Papers/parallel-sort/node3.html#alg-pq

