The intensity of the diffraction peaks are determined by the
arrangement of atoms in the entire crystal
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* The structure factor F,,, sums the result of scattering from all of the

atoms in the unit cell to form a diffraction peak from the (hkl) planes
of atoms

« The amplitude of scattered light is determined by:
— where the atoms are on the atomic planes
* thisis expressed by the fractional coordinates x; y;
— what atoms are on the atomic planes

* the scattering factor f, quantifies the efficiency of X-ray scattering at any
angle by the group ﬂi)electrﬂna in each atom

— The scattering factor is equal to the number of electrons around the atom at 0° 6,
the drops off as @ increases

* N is the fraction of every equivalent position that is occupied by atom j



Crystal Structure factor calculations

(A) X-Ray Scattering by an Atom

- The conventional UC has lattice points as the vertices
 There may or may not be atoms located at the lattice points
 The shape of the UC is a parallelepiped in 3D

J There may be additional atoms in the UC due to two reasons:
» The chosen UC is non-primitive
» The additional atoms may be part of the motif




Scattering by the Unit cell (uc)

= Coherent Scattering
= Unit Cell (UC) is representative of the crystal structure
= Scattered waves from various atoms in the UC interfere to create the diffraction pattern

N e

The wave scattered from the middle plane is out of phase with the ones
scattered from top and bottom planes
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Extendingto 3D | = 272( hx +Kk y’ +1 Z') — Independent of the shape of UC

Note: R, is from corner atoms and R; is from atoms in additional positions in UC



In complex notation

o=2r(hx+ky +12") 'E = Ae'? = fe!l27(h X+ky+l 2]

= |[f atom B is different from atom A — the amplitudes must be weighed by the respective
atomic scattering factors (f)

= The resultant amplitude of all the waves scattered by all the atoms in the UC gives the
scattering factor for the unit cell

= The unit cell scattering factor is called the Structure Factor (F)

Scattering by an unit cell = f(position of the atoms, atomic scattering factors)

Amplitude of wave scattered by all atoms in uc | F 2
Amplitude of wave scattered by an electron oC

n n
Tor i[27(h X\ +k y;+I Z
Fnhkl :Z fj e? :Z fj e[ rhxgreyyH )] For n atoms in the UC
j=1 j=1

F = Structure Factor =

Structure factor is independent of the shape and size of the unit cell

If the UC distorts so do the planes in it!!



Structure factor calculations
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= F is independent of the scattering plane (h k )




B  Atom at (0,0,0) & (%, %, 0) and equivalent positions  [KSElgl{g=leN@]lgiolelgqlelgglelle

_ lp; i[27(h xj+k y|+l z])]
F=1 e" =1, ¢ of
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F—f pil2e(hotk0+-0] ¢ e'[zﬂ(h'§+k-§+l-0)]
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= fe+fe = f[L+e"MW]
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F:2f F2:4f2

e.g. (001), (110), (112); (021), (022), (023)
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F=fl+e"™Y]

//7+/(}00,0,

F=0—F?=0

e.g. (100), (101), (102); (031), (032), (033)

= F is independent of the ‘I’ index



Simple Orthorhombic lattice [001] projection

Trace of (210) planes

These (210) planes form a translationally equivalent set:
pass through all lattice points

C-Centred Orthorhombic lattice [001] projection

e o o
e e

To form a translationally equivalent set of planes
(passing through all lattice points) the red set of
planes have to be drawn

become extinct

= |f the blue planes are scattering in phase then on C- centering the red planes will scatter out
of phase (with the blue planes- as they bisect them) and hence the (210) reflection will

= This analysis is consistent with the extinction rules: (h + k) odd is absent




Simple Orthorhombic lattice [001] projection C-Centred Orthorhombic lattice [001] projection

o ¢ e e e

Trace of (310) planes No new planes are to be added to form a
These (310) planes form a translationally equivalent set:  translationally equivalent set of planes on C-centering
pass through all lattice points

—

= |n case of the (310) planes no new translationally equivalent planes are added on lattice
centering = this reflection cannot go missing.
= This analysis is consistent with the extinction rules: (h + k) even is present




C Atom at(0,0,0) & (%, ¥, 2) and equivalent positions

i2z(h-tk-141. 1
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F?=4f"

F _ f[1+ei7z(h+k+l)]

F=0

> F =2
e.g. (110), (200), (211); (220), (022), (310)

A

1F2=0

e.g. (100), (001), (111); (210), (032), (133)



D Atom at (0,0,0) & (%, %, 0) and equivalent positions Face Centred Cubic

F— f eicoj _ f i[27(h X +k v+ )] (%2, %, 0), (%0, %2), (0, %2, %)

j j e O/O o O/O
. i[2n(ﬂ)] [ZE(E)] [277(@)]

F=f|e™® e 27 +e +€

_ f 1+e|7z(h+k) 4+ pir(k+) +e|ﬁ(|+h)j\ Real o/C/ Q O/O

= f[1+ei7r(h+k) 4 air(k+D) +ei7z(|+h):

IR F =4 —F° =161

e.g. (111), (200), (220), (333), (420)

F =0 F*=0

e.g. (100), (211); (210), (032), (033)

Two odd and one even (e.g. 112); two even and one odd (e.g. 122)



Mixed indices | Two odd and one even (e.g. 112); two even and one odd (e.g. 122)

Mixed indices | CASE h k I
A 0 0 e
B 0 e e

CASE A: [1+e"® +e"® 17 ]=[1+1-1-1]=0
CASE B: [1+e"® +e"® 1" 1=[1-1+1-1]=0

‘ F=0 F? =0 eg.(100), (211); (210), (032), (033)

Unmixed indices All odd (e.g. 111); all even (e.g. 222)

A 4

Unmixed indices | CASE h k I
A 0 0 0
B e e e

CASE A: [1+e"® +e"® +e"@1=[1+1+1+1] =4

CASE B: [1+e"® +e"® +e"®]=[1+1+1+1] =4

EEREE> F =41 —{F7 =161

e.g. (111), (200), (220), (333), (420)

A 4




e Na* at (0,0,0) + Face Centering Translations — (%, %, 0), (%, 0, %), (0, %, %)
Cl-at (%, 0,0)+ FCT — (0, 5, 0), (0, 0, %), (%, %5, %) NaCl:
B _ hak _ Kt _ T Face Centred Cubic
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fcr eiﬁ(h+k+|)[ei7r(—k—l) n ei;z(—l—h) n eiﬁ(—h—k) _|_1]

= :[fNa+ 4 f ei;z(h+k+|)][1_|_eiyz(h+k) 4+ air(k+h) _I_eiir(l+h)]

Cl™




F=[f +f eiyz(h+k+l),]f:i:_l_ aiz(h+k) | qiz(k+l) +ei7z(|ir?~‘)’]\

- " Na a- - A=l TR Tk \

F =[Term-1][Term—2] Zero for mixed indices

Mixed indices | CASE h k I

Mixed indices
A 0 0 e
B 0 e e

CASEA:Term—-2=[1+e"® 4" 1 "1=1+1-1-1]=0

CASEB:Term—-2=[1+e" +e"® 1" ]1=[1-1+1-1]=0

‘ F=0 "% = 0| eg.(100), (211); (210), (032), (033)




Unmixed indices

Unmixed indices | CASE h k I
A 0 0 0
B e e e

CASEA:Term—-2=[1+e"® +e"® 1 "] =[1+1+1+1] =4

CASEB:Term—-2=[1+e"® +e"® 1”@ =[1+1+1+1] =4
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F=4f .
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Cl™
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i7z(h+k+|)]

F=a[f . +f ]

F = 4[fNa+ a 1:CI‘:I

e.

— If (h+ k + 1) is even —>F2 :16[fNa+ + fCI_]2

— If (h+ k+1) is odd ——>F2 =:|.6[fNa+ — fCI‘]Z

g.(111), (222); (133), (244)

e.qg. (222),(244)

e.g. (111), (133)

= Presence of additional atoms/ions/molecules in the UC can alter the
intensities of some of the reflections



e Al at (0, 0, 0) NiAl: Simple Cubic (B2- ordered structure)
Ni at (Y2, ¥, %)

Click here to know more about ordered structures

Al

F = fAI ei[zﬂ(h-0+k-0+l-0)] n fN. e|[27r(h-2+k.2+|.2)]do Op
|

ir2r( 1K, T

B 0 5 A in[h+k+1]
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F= 1EAl_FfNi FZ:(fAI+fNi)2
E—f 4f eirlheksl] ‘ e.g. (110), (200), (211), (220), (310)
= Ta T i

y

~ F = fAI _ fNi F2 ( - :I:_’;“)

e.g. (100), (111), (210), (032) (133)

= When the central atom is identical to the corner ones— we have the BCC case
= This implies that (h+k+l) even reflections are only presentin BCC. ’

This term is zero for BCC



ordered_structures.ppt

Reciprocal lattice/crystal of NiAl

e.g- (110), (200), (211); (220), (310)
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e.g. (100), (111), 2210), (032), (133)
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Al Atom at (0,0,0)
Ni atom at (¥2, %2, 0) and equivalent positions

Simple Cubic (L1, ordered structure)

Click here to know more about ordered structures

(%, %, 0), (%, 0, %), (0, %, %)

. h+k . K+l . I+h
- i22(— 90 il2r(—] il2a( )]
F=1, [e'[z”(o)]]+fN{e 2" +e % +e 2 } ’. #

________ Real ‘ ‘ .

E— fAI + fNi[ein(h+k) 4 pir(k+) _|_ei7z(l+h)]

- IR [~ - 3.
h,k,I — all even or all odd

Two odd and one even (e.g. 112); two even and one odd (e.g. 122)

y

F? = (fAI +3fNi)2
e.g. (111), (200), (220), (333), (420)

F=1,—f

F* = (fAI - fNi)2
e.g. (100), (211); (210), (032), (033)

A
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Reciprocal lattice/crystal of Ni;Al

e.g. (111), (200), (220), (333), (420)

» \ ‘S.!r,';ru.uu.'.r.'u reflection

022
F2 = (fAI +3fNi)2 122
222
001 ®021
L |
1 111 121
| "' .
211 UZ-‘J
010
F*= ( fA:I - fNi)2 _ 100 ; |:
% 21 J,-

Fundamenla}xreﬂ ection

e.g. (100), (211); '%(210), (032), (033)
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Selection / Extinction Rules

. . Reflections which Reflections
Bravals Lattice .
may be present necessarily absent
Simple all None
Body centred (h+k+1)even (h+k+1) odd
Face centred h, k and | unmixed h, k and | mixed
End centred h and k unmixed h and k mixed
C centred C centred

Bravais Lattice

Allowed Reflections

SC All
BCC (h+ k +1) even
FCC h, k and | unmixed
h, k and I are all odd
bC all azreven

& (h + k + I) divisible by 4




h? + k2 + 12 SC FCC BCC DC
1 100
2 110 110
3 111 111 111
4 200 200 200
3) 210
6 211 211
P
8 220 220 220 220
9 300, 221
10 310 310
11 311 311 311
12 222 222 222
13 320
14 321 321
15
16 400 400 400 400
17 410, 322
18 411, 330 411, 330
19 331 331 331




Relative intensity of peaks in powder patterns

a

(I W W

We have already noted that absolute value of intensity of a peak (which is the area under a
given peak) has no significance w.r.t structure identification.

The relative value of intensities of the peak gives information about the motif.
One factor which determines the intensity of a hkl reflection is the structure factor.
In powder patterns many other factors come into the picture as in the next slide.

The multiplicity factor relates to the fact that we have 8 {111} planes giving rise to single
peak, while there are only 6 {100} planes (and so forth). Hence, by this very fact the
intensity of the {111} planes should be more than that of the {100} planes.

A brief consideration of some these factors follows. The reader may consult Cullity’s book
for more details.




— Relative Intensity of diffraction lines in a powder pattern
— Structure Factor (F) — Scattering from UC (has Atomic Scattering Factor included)
—— Multiplicity factor (p) = Number of equivalent scattering planes

— Polarization factor — Effect of wave polarization

I, = (1+Cos?(26))

— Lorentz factor » Combination of 3 geometric factors

Lorentz factor =| —— (Cosé e
Sin260 Sin26

— Absorption factor —— Specimen absorption

— Temperature factor — Thermal diffuse scattering



Multiplicity factor

/ Actually only 3 planes !

Lattice Index Multiplicity// Planes
Cubic (100) 6/ [(100) (010) (001)] (x 2 for negatives)
(with highest - — - )
symmetry) (110) 12 [(110) (101) (011), ( 110) ( 101) (O 11)] (x 2 for negatives)
(111) 12 [(111) (11 1) (1 11) ( 111)] (x 2 for negatives)
(210) oy (210) — 3! Ways, ( 210) — 3! Ways,
(2 10) —> 3! Ways, ( 2 10) — 3! Ways
(211) — 3 ways, (21 1) — 3! ways,
(211) 24 ( 211) —» 3 ways
(321) 48"
Tetragonal (100) 4 [(100) (010)] (x 2 for negatives)
(with highest — .
symmetry) (110) 4 [(110) ( 110)] (x 2 for negatives)
(111) 8 [(111) (11 1) (1 11) ( 111)] (x 2 for negatives)
(210) g* (210) = 2 Ways, ( 210) = 2 Ways,
(2 10) =2 Ways, ( 2 10) = 2 Ways
(211) 16 [Same as for (210) = 8] x 2 (as | can be +1 or -1)
(321) 16" Same as above (as last digit is anyhow not permuted)

* Altered in crystals with lower symmetry




Multiplicity factor

Cubic hkl hhl hkO hhO hhh hOO
48" 24 24" 12 8 6
Hexagonal hk.l hh.l hO.I hk.0 hh.0 h0.0 00.1
J 24" 12* 12* 12* 6 6 2
Tetragonal hkl hhl hOl hkO hhO hOO0 00l
J 16" 8 8 8" 4 4 2
) hkl hkO hOl Okl h0O 0kO 00l
Orthorhombic 3 A 1 2 5 5 >
. hkl hOl OkO
Monoclinic A ) )
hkl
Triclini
rICclinIC 5

* Altered in crystals with lower symmetry (of the same crystal class)




Polarization factor

Lorentz factor

lp = (L+Cos*(20))

~

Lorentz factor = (

Sin26

Lorentz Polarization factor :(

1+ Cos?(26)

Sin’0Cos6

|

XRD pattern f(om Polonium

25 A

20 A

5 All peaks present

(ILook at general trend line! )
O\

£

15 -

10 -

Lorentz-Polarization factor

20

40 60
Bragg Angle (8, degrees)

80



XRD_sample_patterns.ppt#3. Slide 3

Intensity of powder pattern lines (ignoring Temperature & Absorption factors)

(14 Cos?20 = Valid for D_ebye—Scherrer geometl_fy
| :“:‘ Pl = = | — Relative Integrated “Intensity”
Sin“6Cosé

= F — Structure factor

= p — Multiplicity factor

J POINTS

» As one is interested in relative (integrated) intensities of the lines constant factors are
omitted

¢ \/olume of specimen e m,, e e (1/dectector radius)
» Random orientation of crystals — in a material with Texture relative intensities are modified
> | is really diffracted energy (as Intensity is Energy/area/time)
» Ignoring Temperature & Absorption factors = valid for lines close-by in pattern




