


(A)  X-Ray Scattering by an Atom

❑ The conventional UC has lattice points as the vertices

❑ There may or may not be atoms located at the lattice points

❑ The shape of the UC is a parallelepiped in 3D

❑ There may be additional atoms in the UC due to two reasons:

➢ The chosen UC is non-primitive

➢ The additional atoms may be part of the motif

Crystal Structure factor calculations



Scattering by the Unit cell (uc)

▪ Coherent Scattering 
▪ Unit Cell (UC) is representative of the crystal structure
▪ Scattered waves from various atoms in the UC interfere to create the diffraction pattern

The wave scattered from the middle plane is out of phase with the ones 
scattered from top and bottom planes
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Extending to 3D 2 ( )h x k y l z    = + + Independent of the shape of UC

Note: R1 is from corner atoms and R3 is from atoms in additional positions in UC





 =

2



▪ If  atom B is different from atom A → the amplitudes must be weighed by the respective
atomic scattering factors (f)

▪ The resultant amplitude of all the waves scattered by all the atoms in the UC gives the 
scattering factor for the unit cell

▪ The unit cell scattering factor is called the Structure Factor (F)

Scattering by an unit cell = f(position of the atoms, atomic scattering factors)

electronan by  scattered  waveof Amplitude

ucin  atoms allby  scattered  waveof Amplitude
Factor  StructureF ==

[2 ( )]i i h x k y l zE Ae fe    + += =2 ( )h x k y l z    = + +
In complex notation

2FI 

[2 ( )]

1 1

j j j j

n n
i i h x k y l zhkl

n j j

j j

F f e f e
    + +

= =

= = 

Structure factor is independent of the shape and size of the unit cell

For n atoms in the UC

If the UC distorts so do the planes in it!!
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Structure factor calculations

A Atom at (0,0,0) and equivalent positions

[2 ( )]j j j ji i h x k y l z

j jF f e f e
    + +

= =

[2 ( 0 0 0)] 0i h k lF f e f e f  +  + = = =

22 fF =  F is independent of the scattering plane (h k l)

 nini ee −=

Simple Cubic

1) ( −=inodde

1) ( +=inevene



B Atom at (0,0,0) & (½, ½, 0) and equivalent positions

[2 ( )]j j j ji i h x k y l z

j jF f e f e
    + +

= =
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[2 ( 0)]
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 F is independent of the ‘l’ index

C- centred Orthorhombic

Real

]1[ )( khiefF ++= 

fF 2=

0=F

22 4 fF =

02 =F

e.g. (001), (110), (112); (021), (022), (023)

e.g. (100), (101), (102); (031), (032), (033)



▪ If the blue planes are scattering in phase then on C- centering the red planes will scatter out 

of phase (with the blue planes- as they bisect them) and hence the (210) reflection will 

become extinct

▪ This analysis is consistent with the extinction rules: (h + k) odd is absent



▪ In case of the (310) planes no new translationally equivalent planes are added on lattice 

centering  this reflection cannot go missing.

▪ This analysis is consistent with the extinction rules: (h + k) even is present



C Atom at (0,0,0) & (½, ½, ½) and equivalent positions

[2 ( )]j j j ji i h x k y l z

j jF f e f e
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Body centred 
Orthorhombic

Real

]1[ )( lkhiefF +++= 

fF 2=

0=F

22 4 fF =

02 =F

e.g. (110), (200), (211); (220), (022), (310)

e.g. (100), (001), (111); (210), (032), (133)



D Atom at (0,0,0) & (½, ½, 0) and equivalent positions

[2 ( )]j j j ji i h x k y l z

j jF f e f e
    + +
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Face Centred Cubic

Real

fF 4=

0=F

22 16 fF =

02 =F

(h, k, l) unmixed

(h, k, l) mixed

e.g. (111), (200), (220), (333), (420)

e.g. (100), (211); (210), (032), (033)

(½, ½, 0), (½, 0, ½), (0, ½, ½)

]1[ )()()( hlilkikhi eeefF +++ +++= 

Two odd and one even (e.g. 112); two even and one odd (e.g. 122)



Mixed indices CASE h k l

A o o e

B o e e

( ) ( ) ( )CASE A : [1 ] [1 1 1 1] 0i e i o i oe e e  + + + = + − − =

( ) ( ) ( )CASE B : [1 ] [1 1 1 1] 0i o i e i oe e e  + + + = − + − =

0=F 02 =F(h, k, l) mixed e.g. (100), (211); (210), (032), (033)

Mixed indices Two odd and one even (e.g. 112); two even and one odd (e.g. 122)

Unmixed indices CASE h k l

A o o o

B e e e

Unmixed indices

fF 4= 22 16 fF =(h, k, l) unmixed

e.g. (111), (200), (220), (333), (420)

All odd (e.g. 111); all even (e.g. 222)

( ) ( ) ( )CASE A : [1 ] [1 1 1 1] 4i e i e i ee e e  + + + = + + + =

( ) ( ) ( )CASE B : [1 ] [1 1 1 1] 4i e i e i ee e e  + + + = + + + =



E
Na+ at (0,0,0) + Face Centering Translations → (½, ½, 0), (½, 0, ½), (0, ½, ½)

Cl− at (½, 0, 0) + FCT → (0, ½, 0), (0, 0, ½), (½, ½, ½)









+++

+







+++=

++

+++

−

+

)]
2

(2[)]
2

(2[)]
2

(2[)]
2

(2[

)]
2

(2[)]
2

(2[)]
2

(2[
)]0(2[

       
lkh

i
l

i
k

i
h

i

Cl

hl
i

lk
i

kh
i

i

Na

eeeef

eeeefF






][      

]1[

)()()()(

)()()(

lkhilikihi

Cl

hlilkikhi

Na

eeeef

eeefF

++

+++

+++

++++=

−

+





]1[      

]1[

)()()()(

)()()(

+++

++++=

−−−−−−++

+++

−

+

khihlilkilkhi

Cl

hlilkikhi

Na

eeeef

eeefF





]1][[ )()()()( hlilkikhilkhi

ClNa
eeeeffF +++++ ++++= −+



NaCl: 
Face Centred Cubic



]1][[ )()()()( hlilkikhilkhi

ClNa
eeeeffF +++++ ++++= −+



Zero for mixed indices

Mixed indices CASE h k l

A o o e

B o e e

]2][1[ −−= TermTermF

0]1111[]1[2:ACASE )()()( =−−+=+++=− oioiei eeeTerm 

0]1111[]1[2:BCASE )()()( =−+−=+++=− oieioi eeeTerm 

0=F 02 =F(h, k, l) mixed e.g. (100), (211); (210), (032), (033)

Mixed indices



(h, k, l) unmixed ][4 )( lkhi

ClNa
effF ++

−+ += 

][4 −+ +=
ClNa

ffF If (h + k + l) is even
22 ][16 −+ +=

ClNa
ffF

][4 −+ −=
ClNa

ffF If (h + k + l) is odd
22 ][16 −+ −=

ClNa
ffF

e.g. (111), (222); (133), (244)

e.g. (222),(244)

e.g. (111), (133)

Unmixed indices CASE h k l

A o o o

B e e e

4]1111[]1[2:ACASE )()()( =+++=+++=− eieiei eeeTerm 

4]1111[]1[2:BCASE )()()( =+++=+++=− eieiei eeeTerm 

Unmixed indices

 Presence of additional atoms/ions/molecules in the UC can alter the 
intensities of some of the reflections



F
Al at (0, 0, 0) 

Ni at (½, ½, ½)

NiAl: Simple Cubic (B2- ordered structure)

SC

1 1 1
[2 ( )]

[2 ( 0 0 0)] 2 2 2

[ 2 ( )]
0 [ ]2   

i h k l
i h k l

Al Ni

h k l
i

i h k l

Al Ni Al Ni

F f e f e

f e f e f f e







 +  + 
 +  + 

+ +

+ +

= +

= + = +

Real

Al NiF f f= +

e.g. (110), (200), (211), (220), (310)

e.g. (100), (111), (210), (032), (133)

[ ]i h k l

Al NiF f f e  + += +

2 2( )Al NiF f f= +

Al NiF f f= − 2 2( )Al NiF f f= −

Click here to know more about ordered structures

▪ When the central atom is identical to the corner ones− we have the BCC case.

▪ This implies that (h+k+l) even reflections are only present in BCC.
This term is zero for BCC

ordered_structures.ppt


Reciprocal lattice/crystal of NiAl

2( )Al NiI f f +

2( )Al NiI f f −

e.g. (110), (200), (211); (220), (310)

e.g. (100), (111), (210), (032), (133)

Click here to know more about

reciprocal_lattice.ppt
reciprocal_lattice.ppt


G
Al Atom at (0,0,0) 

Ni atom at (½, ½, 0) and equivalent positions

[2 ( )] [2 ( )] [2 ( )]
[2 ( 0)] 2 2 2

( ) ( ) ( )    [ ]

h k k l l h
i i i

i

Al Ni

i h k i k l i l h

Al Ni

F f e f e e e

f f e e e

  


  

+ + +

+ + +

 
 = + + +  

 

= + + +

Simple Cubic (L12 ordered structure)

Real

(h, k, l) unmixed

(h, k, l) mixed

e.g. (111), (200), (220), (333), (420)

e.g. (100), (211); (210), (032), (033)

(½, ½, 0), (½, 0, ½), (0, ½, ½)

Two odd and one even (e.g. 112); two even and one odd (e.g. 122)

Ni

Al

( ) ( ) ( )[ ]i h k i k l i l h

Al NiF f f e e e  + + += + + +

3Al NiF f f= + 2 2( 3 )Al NiF f f= +

Al NiF f f= − 2 2( )Al NiF f f= −

h,k,l → all even or all odd

Click here to know more about ordered structures

ordered_structures.ppt


e.g. (111), (200), (220), (333), (420)

e.g. (100), (211); (210), (032), (033)

2 2( 3 )Al NiF f f= +

2 2( )Al NiF f f= −

Reciprocal lattice/crystal of Ni3Al Click here to know more about

reciprocal_lattice.ppt
reciprocal_lattice.ppt


Bravais Lattice
Reflections which 

may be present

Reflections 

necessarily absent

Simple all None

Body centred (h + k + l) even (h + k + l) odd

Face centred h, k and l unmixed h, k and l mixed

End centred
h  and k unmixed 

C centred

h  and k mixed

C centred

Bravais Lattice Allowed Reflections

SC All

BCC (h + k + l) even

FCC h, k and l unmixed

DC

h, k and l are all odd

Or

all are even

& (h + k + l) divisible by 4

Selection / Extinction Rules



h2 + k2 + l2 SC FCC BCC DC

1 100

2 110 110

3 111 111 111

4 200 200 200

5 210

6 211 211

7

8 220 220 220 220

9 300, 221

10 310 310

11 311 311 311

12 222 222 222

13 320

14 321 321

15

16 400 400 400 400

17 410, 322

18 411, 330 411, 330

19 331 331 331



❑ We have already noted that absolute value of intensity of a peak (which is the area under a 

given peak) has no significance w.r.t structure identification.

❑ The relative value of intensities of the peak gives information about the motif.

❑ One factor which determines the intensity of a hkl reflection is the structure factor.

❑ In powder patterns many other factors come into the picture as in the next slide.

❑ The multiplicity factor relates to the fact that we have 8 {111} planes giving rise to single 

peak, while there are only 6 {100} planes (and so forth). Hence, by this very fact the 

intensity of the {111} planes should be more than that of the {100} planes.

❑ A brief consideration of some these factors follows. The reader may consult Cullity’s book 

for more details.

Relative intensity of peaks in powder patterns



Structure Factor (F)

Multiplicity factor (p)

Polarization factor

Lorentz factor

Relative Intensity of diffraction lines in a powder pattern

Absorption factor

Temperature factor

Scattering from UC (has Atomic Scattering Factor included)

Number of equivalent scattering planes

Effect of wave polarization

Combination of 3 geometric factors

Specimen absorption

Thermal diffuse scattering

( ) 
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( )( )21 2CosIP +=



Multiplicity factor

Lattice Index Multiplicity Planes

Cubic

(with highest 

symmetry)

(100) 6 [(100) (010) (001)] ( 2 for negatives)

(110) 12 [(110) (101) (011), (110) (101) (011)] ( 2 for negatives)

(111) 12 [(111) (111) (111) (111)] ( 2 for negatives)

(210) 24* (210) → 3! Ways, (210) → 3! Ways, 

(210) → 3! Ways, (210) → 3! Ways

(211) 24
(211) → 3 ways, (211) → 3! ways, 

(211) → 3 ways

(321) 48*

Tetragonal

(with highest 

symmetry)

(100) 4 [(100) (010)] ( 2 for negatives)

(110) 4 [(110) (110)] ( 2 for negatives)

(111) 8 [(111) (111) (111) (111)] ( 2 for negatives)

(210) 8* (210) = 2 Ways, (210) = 2 Ways, 

(210) = 2 Ways, (210) = 2 Ways

(211) 16 [Same as for (210) = 8]  2 (as l can be +1 or −1)

(321) 16* Same as above (as last digit is anyhow not permuted)

* Altered in crystals with lower symmetry

Actually only 3 planes !



Cubic
hkl hhl hk0 hh0 hhh h00

48* 24 24* 12 8 6

Hexagonal
hk.l hh.l h0.l hk.0 hh.0 h0.0 00.l

24* 12* 12* 12* 6 6 2

Tetragonal
hkl hhl h0l hk0 hh0 h00 00l

16* 8 8 8* 4 4 2

Orthorhombic
hkl hk0 h0l 0kl h00 0k0 00l

8 4 4 4 2 2 2

Monoclinic
hkl h0l 0k0

4 2 2

Triclinic
hkl

2

* Altered in crystals with lower symmetry (of the same crystal class)

Multiplicity factor



All peaks present

Look at general trend line!
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XRD pattern from PoloniumClick here for details

Example of effect of Polarization factor on 

power pattern

XRD_sample_patterns.ppt#3. Slide 3


Intensity of powder pattern lines (ignoring Temperature & Absorption factors)
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▪ Valid for Debye-Scherrer geometry

▪ I  → Relative Integrated “Intensity”

▪ F → Structure factor

▪ p → Multiplicity factor

❑ POINTS

➢ As one is interested in relative (integrated) intensities of the lines constant factors are 

omitted 

• Volume of specimen  • me , e  • (1/dectector radius)

➢ Random orientation of crystals → in a material with Texture relative intensities are modified

➢ I is really diffracted energy (as Intensity is Energy/area/time)

➢ Ignoring Temperature & Absorption factors  valid for lines close-by in pattern


