PREORDER TREE TRAVERSAL

Let us consider the preblem of numbering the vertices of a rooted

tree in preorder (depth first search order).

At first glance this problem locks sequential!

RECURSIVE PREORDER TRAVERSAL

PREORDER.TRAVERSAL(nodeptr):
Begin
it nodeptrZnull then
nodecount € nodecount + 1
nodepitrlabel € nodecount
PREORDER.TRAVERSAL(nodeptr.left)
PREORDER.TRAVERSAL(nadeptr.right)
endif

End

Where is the parallelism?
The fundamental operation
assigns a label to a node.

We cannot assign labels to the
vertices in the right subtree of
the left subtree, until we know
how many vertices are on the
left subtree of the left subtree,
and so on.

The algorithm seems inherently
sequentiall

Can we parallelize thisg

PARALLELIZATION OF THE TRAVERSAL

Instead of focusing on the vertices, let us look into the edges.

When we perform a preorder traversal, we systematically work our
way through the edges of the tree.

* We pass along every vertex twice: one heading down from the parent to the child,
and one going from the child to the parent.

* If we divide each tree edge into two edges, one corresponding fo the downward

traversal, and one corresponding fo the upward traversal, then the problem of fraversing
a tree turns info the problem of traversing a single linked list.

4 steps:

1. The algorithm constructs a singly linked list. Each vertex of the linked
list corresponds to a downward or upward edge traversal.

2. Algorithm assigns weights to the vertices of the newly created single
linked list.

* For vertices corresponding to downward edges, the weight is 1 (it contributes to node
count).

* For vertices corresponding to upward edges, the weight is 0 (it does not contribute to node
count).

3. For each element of the singly-linked list, the rank of each element is
determined (by pointer jumping).

4. The processors associated with the downward edges use the ranks they
have computed to assign a preorder traversal number to their associated
tree nodes (the tree node at the end of the downward edge).

EXAMPLE

al Tree

b) Double Tree Edges, distinguishing
downward edges from vpward
edges.

c) Build linked list out of directed tree
edges. Assodiate 1 with downward
edges, and 0 with upward edges.

d) Use pointer jumping to compute total
weight from each vertex to end of
list.

The elements of the linked list which

correspond to downward edges, have

been shaded.

Processors managing these elements

assign preorder values.

For example, (E/G) has a weight 4,

ABCDEFOGH meoning free node G is 4% node from
Nz e a5]¢] end of preorder traversal list.
il The tree has B nodes, so it con compute

that tree node G has label 5 in preorder
traversal (=8-4+1)

DATA STRUCTURE FOR THE TREE

e [[ATATs s < eTE]

sibling [ooll| C [oul| E [oun[oun| H [oen

cild [B | D[F [oun| G |ou|ou|een]

For every tree node, the data structure stores the node’s parent, the node’s
immediate sibling to the right, and the node’s leftmost child.

Representing the node this way keeps the amount of data stored a
constant for each tree node and simplifies the tree traversal.

PROCESSOR ALLOCATION

The PRAM algorithm spawns 2(n-1) processors.
A tree with nodes have (n-1) edges.

We are dividing each edge into two edges, one for the downward
traversal and one for the upward traversal.

So, the algorithm needs 2(n-1) processors to manipulate each of the
2(n-1) edges of the singly-linked list of elements corresponding to the
edge traversals.

CONSTRUCTION OF THE LINKED LIST

Once all the processors have been activated they construct
the linked list:

= P{i,j): The processor for the edge (i)

= Mote (i) has a different processor P{j,i)

Given an edge (i,j), P(i,j) must compute the successor of (i,j)
and store in a global array: suce[1...2(n-1)].
* If the successor of (i,j) is (j,k), then succ[(i,j)]1€ (i k)

HANDLING UPWARD EDGES

Edge (i,i), such that parent(i)=j

If sibling[i]#=NULL
o succ(i,j)] € (j,sibling][i])
k

Edge (i j), such that parent(i)=j

If sibling[i]=MULL

° succl(i,i)] € (j,sibling[i])

Else If parenti]ZHNULL
succ](i,i)] € (j,parent(i])

Edge (i,i), such that parent(i)=j

If sibling[i]J=HULL
succ[(i,j)] < (j,sibling[i])

Else If parent[i]Z=HULL
succ](i,i)] € (j,parent(i])

Else
o succ[(i,i)1 € (i)
The edge is at the end of
the tree traversal, so we
o put a loop at the end of

the element list.

HANDLING DOWNWARD EDGES

Edge (i,i), such that parent[i]#j.

If child[j]=NULL
succl(i,i)] € (j,child[f])

Edge [i,j), such that parent[i]#;.

If child[jjZNULL
succ[(i,i)] € (j,child(j])

else

i succ[(i,))] € (i)

ie. jis a leaf and the
successor is the edge back

from the child to the
o parent.

ASSIGNING EDGE RANKS

After the processors construct the list, they assign position values:
* 1 to those elements corresponding o downward edges

* [to those elements corresponding fo upward edges.

* Mote the root is already handled.

if parent[i]=j, position[(i,j)]€0
Else position[[i,j)]€ 1

