MERGING TWO SORTED ARRAYS

An optimal RAM algorithm creates the merged list one element at a
fime.

* Requires at most n-1 comparisions to merge two sorted lists of n/2 elements.
* Time complexity ®(n)

* Can we do in lesser fime?

PARALLEL MERGE

Consider two sorted lists of distinct elements of size n/2.

We spawn n processors, one for each element of the list to be
merged.

In parallel, the processors perform binary search of the corresponding
elements in the other half of the array.

* Element in the lower half of the array performs a binary search in the vpper half.

* Element in the upper half of the array performs a binary search in the lower half.

‘ THE TASK OF P,

A[i=3] is larger than
i-1=(3-1)=2 elements in
the lower array (lower
wrt. Index)

Perform a binary
search with A[3] in the
Upper array.

Get a position
high=index of the
largest integer smaller
than 7=>high=10.

Afl]

AlE]

A9 A[16]

THE TASK OF P,

A[i=11]=8 is larger than
i-(n/2+1)=(11-9)=2
elements in the upper
array (lower wrt. Index)

Perform a binary
search with A[11] in the
lower array.

Get a position
high=index of the
largest integer smaller
than 8=>high=3.

A[1] A[8]

A7)

A[16]

Thus the same expression is vsed to
place the elements in their proper
position in the merged list.

Thus, 7 is larger than 2
elements in the lower array,
and larger than
(high-n/2)=10-8=2 elements
in the vpper array.

S0, P, can calcwlate the
position of 7 in the merged
list, ie. after (i-1)+(high-n/2),
thus the position is
(i+high-n/2).

Thus, 8 is larger than 2
elements in the upper array,
and larger than

high=3 elements in the upper
array.

5o, P, can calculate the
position of 8 in the merged
list, ie. after (i-n/2-1)+(high),
thus the position is
(i+high-n/2).

THE PRAM ALGORITHM

MERGE.LISTS (CREW PRAM):

Given: Two sorted lists of n/2 elements each, stored in
A[1)--- Aln/2] and A[(nf2)+ 1]--- A[n]
The two lists and their unions have disjoint values
Final condition: Merged list in locations A[l1]--- A[a]
Global A[l--- a]
Local x, low, high, index
bagin
spawn (P, P R)
forall P, where | = i < ndo
| Each processor sets bounds for binary search |
i = n/2 then
low =~ (n/2)+1"
high +«~ n
else
low « |
high +« nj2

endi
{ Each processor performs binary search)
x +« Ali]
repeat
index « |(low + high)/2)
if x < Alindex) then
high « index — 1
else
low < index + 1
endif
until fow > high
{ Put value in correct position on merged list)
Alhigh+i-=n/2] « x
endfor
end
Mote that the final writing into the array is done by the processors
without any conflict. All the locations are disfinct.
Also note that the total number of operations performed have increased
from that in a sequential algorithm &(n) to B(nlogn) in the parallel

algorithm.

